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Cross-lingual entity alignment has attracted considerable attention in recent years. Past studies using conven-
tional approaches to match entities share the common problem of missing important structural information
beyond entities in the modeling process. This allows graph neural network models to step in. Most existing
graph neural network approaches model individual knowledge graphs (KGs) separately with a small amount
of pre-aligned entities served as anchors to connect different KG embedding spaces. However, this character-
istic can cause several major problems, including performance restraint due to the insufficiency of available
seed alignments and ignorance of pre-aligned links that are useful in contextual information in-between
nodes. In this article, we propose DuGa-DIT, a dual gated graph attention network with dynamic iterative
training, to address these problems in a unified model. The DuGa-DIT model captures neighborhood and
cross-KG alignment features by using intra-KG attention and cross-KG attention layers. With the dynamic
iterative process, we can dynamically update the cross-KG attention score matrices, which enables our model
to capture more cross-KG information. We conduct extensive experiments on two benchmark datasets and
a case study in cross-lingual personalized search. Our experimental results demonstrate that DuGa-DIT out-
performs state-of-the-art methods.
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1 INTRODUCTION

The amount of data we produce daily and the amount of information available for internet users
today are astounding and ever-expanding. According to Raconteur’s statistics,1 it is estimated that
around 463 exabytes of data will be produced globally on a daily basis by 2025.2 In addition, more
than 1.8 billion web pages are currently active and interlinked through the World Wide Web and
search engines.3 Among most of these successful social network sites, Internet of Things (IoT),
and search engines, the most significant denominator is the use of knowledge graphs (KGs) to
structurally achieve effective data storage and information retrieval. Each individual, group, or
enterprise organizes and refines information into their own form of knowledge with a confined
scope of complexity. However, in a broader perspective, we commonly agree that KG refers to
a collection of interlinked entities with their relationships, represented in Resource Description
Framework (RDF), where information can be acquired, integrated, and discovered with ontologies.
From the mathematical perspective, we define KGs as directed heterogeneous multigraphs whose
nodes represent entities and the edges stand for the semantic relationships between the nodes.
In the natural language processing and information retrieval fields of research, KGs have suc-

cessfully supported many downstream tasks such as language modeling [96], question answering
[79], and personalized search and recommendation [13, 43, 75, 78]. So far, those open-sourced
large-scale KGs such as Freebase [3], DBpedia [1], WordNet [44], COVID-19 KG,4 and Google KG
[62] have also been widely implemented to many specific real-world applications. For example, ac-
cording to the publicly available data, Google KGs currently contain more than 500 billion facts in
the form of triples to support its Google web search. And COVID-19 KG has supported research in
drugs and vaccines, disease detection, virus traceability, virus transmission, epidemic prevention,
and so on. Although these KGs have been widely adopted, one of the big challenges is that there
are still a lot of missing facts within these existing KGs. Due to the high degree of incompleteness
among these KGs, the performance and effectiveness of KGs in real-world scenarios are greatly
affected. In some critical applications, such as clinical decision support, the lack of key nodes or
information would even lead to serious consequences.
To deal with the issues stated previously, one direct solution is to effectively learn the KG embed-

ding and then to predict the missing links using the embedded representations, known as the task
of knowledge graph embedding (KGE). Examples of these KGE models mainly include transla-
tional based models of TransE [5] and its various extensions TransH [77], TransD [22], and TransR
[37]; complex models of DistMult [91] and ComplEx [69]; multi-layered convolutional neural

network (CNN) based models of ConvE [11] and ConvKB [47]; graph neural network (GNN)

based models of A2N [2], R-GCN [58], and KBGAT [45], and some other different approaches, such
as RotatE [65], QuatE [94], CapsE [49], and ReInceptionE [85]. Although these models are good
at delivering promising experimental results, these methods are still limited to the KGE task on a
single KG.

1https://www.raconteur.net/infographics/a-day-in-data/.
2https://www.weforum.org/agenda/2019/04/how-much-data-is-generated-each-day-cf4bddf29f/.
3https://www.internetlivestats.com/total-number-of-websites/.
4https://covid-19.aminer.cn/kg?lang=en.
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Recently, given the crowd-sourcing strategy and the human involvement in the KG construction,
many KGs written in different languages have emerged, such as YAGO [63], DBPedia [31], and
BabelNet [46]. Even though these multilingual KGs were constructed in various ways, there are
certain connections in between them. If we could exercise effective alignment in between these
distributed multilingual KGs, and form an even more vast in scale and higher in-coverage KG,
that would be one viable solution to the problems existing among these incomplete single KGs
[24]. Meanwhile, it could also be another exciting research direction in general. Moreover, these
highly integrated multilingual KGs can significantly benefit many cross-lingual natural language
processing and information retrieval tasks. In this article, we mainly take the perspective of KG
alignment to solve the incompleteness issue of a single KG.
Multilingual KG alignment aims to match entities with their counterpart in KGs of different

languages. In general, conventional models for entity alignment rely heavily on the quality of
extracted features and machine translations, which restrict their model performances to be ro-
bust on heterogeneous data scenarios and on multilingual entity alignment tasks. For example, for
conventional models such as translational-based models and complex models, the expressiveness
of these models and the diversity of feature extraction have always been a problem due to their
shallow structures unless the embedding size increases. Later on, although the CNNmethods have
shown better results, they still lack modeling important structural information beyond the entities.
This opens up an avenue for the powerful GNN-based approaches to learn entity representations
with the entity itself and its neighboring features [6, 41, 68, 76, 89, 92]. However, most of these
existing GNN-based methods model each individual KG separately with a small amount of pre-
aligned entities served as anchors to connect different KG embedding spaces. This characteristic
leads to two major problems. First, those approaches are usually restrained by the insufficiency
of seed alignments available from the KGs. Second, these existing methods tend to ignore the use-
ful and pre-aligned links in contextual information in-between nodes. Intuitively, equivalent enti-
ties across different KGs should share as many pre-aligned neighbors as possible. For example, in
Figure 1, even though the Chinese entity “����(Gothic language)” and the English entity
“Gothic language” share the same formality after machine translation, the actual entity alignment
pair should be “����(Gothic language)” and “Gwich’in language.” With the help of other con-
textual information and alignments existing in the KGs, we could infer the correct alignment from
examples of existed alignment pairs of “��(United States)” and “United States,” “���(Canada)”
and “Canada,” “������(Na de nene)” and “Na-Dene languages,” and “����(German lan-

guage branch)” and “Athabaskan languages,” and so forth.
Given the problem stated earlier, GM-EHD-JEA [88] proposed an easy-to-hard method that aims

to predict model-confident alignment as additional input first, and then to predict the remaining
hard alignments. Even though the rationale is good, their model depends on a two-stage reason-
ing and a joint entity alignment, which requires high computational cost and large search space.
Most recently, we proposed a contextual alignment enhanced cross graph attention network

(CAECGAT) [86] to address the issue of the existing GNN-based approaches stated earlier. In this
preliminary study, we design the system to jointly learn embeddings in different KGs by using
pre-aligned seeds to propagate the information across KGs. Compared to GM-EHD-JEA, our pro-
posed CAECGAT is more efficient. However, we find that this preliminary study still faces certain
challenges and issues in propagating information across KGs due to the lack of pre-aligned entity
pairs. Taking the example in Figure 1, if there is no neighborhood alignments surrounding the
Chinese entity “����(Gothic language)” and the English entity “Gothic language,” the prelim-
inary CAECGAT model is not able to propagate cross-KG information. To tackle the preceding
challenges, we propose DuGa-DIT, a dual gated graph attention network (GAT) with dynamic
iterative training, for cross-lingual entity alignment in this study, which is able to mitigate all of
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Fig. 1. An example of cross-lingual entity alignment in the DBP15KZH−EN dataset. The translated surface

strings for Chinese entities are provided in the original DBP15KZH−EN dataset [66]. The dashed lines rep-

resent the pre-aligned neighbors.

these problems in a unified framework. Specifically, the dual KG attention layer is composed of one
intra-KG attention layer and one cross-KG attention layer. The intra-KG attention layer serves the
purpose of learning neighborhood features for each KG, and the cross-KG attention layer serves
to collect alignment information across the two KGs. By stacking multiple dual KG attention lay-
ers, the local neighborhood and cross-KG alignment information can be propagated to multi-hop
neighbors. Our proposed DuGa-DIT model is able to take full use of the pre-aligned entity pairs
in both training and prediction procedures because of the cross-KG attention aggregation layer.
Furthermore, by applying the dynamic iterative training process, we can dynamically update the
cross-KG attention score matrices, which allow more cross-KG information transfer across dif-
ferent KGs. We conduct extensive experiments on two benchmark datasets and a case study in
cross-lingual personalized search and recommendation.
The main contributions of this study are thus summarized as follows:

• We propose DuGa-DIT for cross-lingual entity alignment, which can learn cross-KG embed-
dings to bridge the semantic gap between different KGs by leveraging both neighborhood
features and cross-KG alignment information.
• We develop a dynamic iterative training process to dynamically update the cross-KG atten-
tion score matrices by iteratively adding new seed alignments, which allow more cross-KG
information transfer across different KGs.
• We conduct extensive experiments on two benchmark datasets for cross-lingual entity align-
ment. The experimental results demonstrate that our proposed method is effective and ro-
bust for entity alignment task.

The rest of the article is structured as follows. Section 2 gives a background to our study.
Section 3 elaborates on our approach of the proposed DuGa-DIT model. Section 4 describes the
datasets and implementation details we applied in this study as well as all experimental results
and analyses. Last, Section 5 concludes the article with some suggestions for future work.
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2 RELATEDWORK

To address the problem of multilingual entity alignment that our proposed method is solving,
we hereby discuss mainly two subfields of related work: KGE and multilingual KG alignment. The
detailed discussions and analyses of these two groups of existing literature are presented as follows.

2.1 Knowledge Graph Embedding

KGE aims to embed entities and relations of KGs into continuous vector spaces. The purpose of em-
bedding is to inherit the original structure of KG entities and simplify the process of manipulating
them in the future. As the number and scale of KGs grow rapidly, KGE becomes more important
in tasks of KG analyses and semantic data modeling.

2.1.1 Translation-Based Methods. Translation-based models are considered to be one of the
major approaches to the KGE problem. Bordes et al. [5] proposed the most representative transla-
tional distance method, named TransE. TransE is powerful and promising to predict links, classify
triples, and model large-scale KGs on 1 to 1 relations. It is also a pioneer to show the feasibility
of KG modeling. The proposed TransE model follows an assumption that h + r ≈ t , for all triples
(h, r , t ). Since the structure and the assumption of TransE are simple, the model is not capable of
modeling complex relations between entities, such as 1 to N, N to 1, or N to N relations. Since then,
many variations of TransE have been introduced [14, 20, 22, 37, 57, 77, 84, 93]. However, it is worth
noting that there is a trade-off in between model performance and model complexity among these
latest approaches. These new approaches of representations of relational translation achieve more
promising results than TransE, although due to the complexity nature of the models, computa-
tional costs are comparatively higher. To increase the expressiveness of embeddings from labeled
and unlabeled entities from KGs, as well as to address the heterogeneity and imbalance nature
of KGs, TranSparse [23] was proposed to deal with the two issues. In TranSparse, conventional
transfer matrices are changed to adaptive sparse matrices. The sparse degrees of these matrices
are generated by the number of entities linking various relations.

2.1.2 Semantic Matching Methods. Semantic matching methods refer to the group of models
that calculate the semantic similarities using vectors or matrices. RESCAL [51] is the first knowl-
edge embedding model that incorporates the three-way tensor factorization. Bilinear [21] is the
representatives where relations are modeled as matrices while entities are associated with vec-
tors. DistMult [91] captures the best relational semantics when embeddings are learned from the
bilinear objective. Moreover, the composition of relations is characterized by the multiplication
of matrices. Similar to DistMult, as RESCAL’s extension, ComplEx [69] proposes to solve binary
relations problems, symmetric or asymmetric, by using complex valued embeddings. Within this
category, there have also been some semantic matchingmodels enhanced by neural networks. SME
[4] is first proposed to encode the interactions of entities and relations by using the linear and bi-
linear matching blocks in neural networks. NTN [8] serves as a foundation of the improved model
of Klein et al. [28] with multilingual exposures. KrompaB [30] incorporates type-constraint prior
knowledge into various state-of-the-art latent variable approaches to enhance the experimental re-
sults of link prediction. KR-EAR [36] distinguishes attributes and relations in a single knowledge
base for knowledge representation to model correlations and predictions on entities, relations, and
attributes. Other related works include but are not limited to HOLE [50] and ProjE [60].

2.1.3 CNN-Based Methods. Another major approach to KGE is applying multi-layer CNN-
based models to generate more expressive embeddings due to its high parameter efficiency. ConvE
[11] uses 2D convolution operations tomodel local interactions between the head entities and their
relations. ConvE is able to express semantic information by reshaping the head entities and the
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respective relations into 2Dmatrices usingmultiple non-linear feature learning. ConvKB proposed
by Nguyen et al. [47] represents triples in a three-column matrix format and feeds them into the
CNN to filter out different feature maps. The feature vector is then generated from consolidating
the preceding feature maps to show the representation of triples before multiplications with a
weighting vector to generate final scores. As a result, ConvKB is capable of capturing both global
relationships and translational features between nodes and relations. InteractE [70] improves the
former model performance further by increasing interactions between entities and relations em-
beddings. Even though these methods show significant improvement in learning more expressive
features, they share the drawback of considering each triple independently and thus lose plenty
of latent information from the KGs. Aside from these models, RSN [18] and CTEA [90] are also
examples of leveraging CNN-based deep neural network models to tackle KGE problems. In ad-
dition, the context-aware CNN [53] is proposed to improve the KGE results with neighborhood
information being incorporated. Moreover, CapsE [49], CoKE [74], and ReInceptionE [85] are also
CNN-based KGE models belonging to this category.

2.1.4 Methods Using Neighborhood Information. Neighborhood information based models
learn embeddings by targeting the neighborhood information of an entity. Recently, many studies
taking this approach have shown significant performance gains in the KGE task [2, 45, 48, 58, 59,
73]. A2N [2] uses the attention mechanism to get query-specific neighbors. R-GCN [58] is the first
model to use GCNs to model multi-relational data in KGs. KBGAT [45] proposed to use GATs [71]
to assign different importance for neighbors. TransE-NMM [48] extended TransE by considering
neighboring entities. With the gating mechanism, NKGE [73] takes in both semantic and topolog-
ical features of a specific entity to complete the KGE task. SACN [59] was constructed on top of
GCN and ConvE to learn richer neighborhood information in local aggregations, leading to more
accurate representations.

2.1.5 Methods Using Relation Paths/Literals. In addition, several studies take relation path
based approaches to learn and improve embeddings from KGs. DeepPath [87] takes the approach
of reinforcement learning to capture multi-hop relation paths with global information. RTransE
[15] and PTransE [35] use multi-step relational paths to complete KGs, whereas SimplE [25] and
RotatE [65] follow the same bilinear model path to tackle the issue. Aside from that, there are a
number of studies of proposed models with literals to learn KGE. TransEA [83] utilizes a combina-
tion of the attribute embedding model and the translation-based embedding model to jointly learn
entity relations and numeric attributes simultaneously. LiteralE [29], built on top of the existing
latent feature approaches, extends the link prediction task by stacking an extra simple module to
directly incorporate literals into embedding learnings with a parameterized function. KBLRN [16]
innovatively integrates different feature types of latent, relational, and numerical data by combin-
ing neural representation learning with probabilistic product of expert models.

2.1.6 Summary and Comparisons. In summary, the five main categories of KGE models have
their own pros and cons. Translation-based models have strong capability of preserving the struc-
tural information while learning the embeddings. However, due to the complexity nature of these
models, computational costs are relatively high. Semantic-based models enjoy their shallow struc-
tures, which are fast and easy to scale up to the entire KGs, but they also sacrifice the capability
of capturing more expressive features. Relation path based models are able to exploit long-term
dependency of entity relations spanning over all the relational paths; however, their expressive-
ness of the features is still limited. CNN-based models are introduced as the deep learning based
models are generally more powerful to learn expressive features, but most of the studies con-
sider each triplet individually and lose much valuable latent information from KGs. Although the
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existing models belonging to the neighborhood-based models category have achieved much more
promising results on the KGE task, they also suffer disadvantages in mainly two aspects: (1) most
of these models only consider the inbound directional neighbors of a specific entity and tend to
ignore the information-rich contexts from outbound directional neighbors, and (2) most of these
models only apply the k-th hop output to learn the multi-hop embeddings, which suffers from the
loss of a great number of early-stage embedding information at the step of graph attention.

2.2 Multilingual Entity Alignment

Aside from KGE, another line of research related to this study is to align entities across various
different languages. Traditional approaches to entity alignment are mainly human centric at the
cost of time, labor, and flexibility (e.g., [33, 40, 42, 72]). However, as the size of KGs grows more
extensively over time, the previously proposed methods have become more inapplicable due to
the upscaling.
To overcome the limitations of those traditional approaches, researchers have developed many

advanced models by leveraging deep learning algorithms recently. Based on whether the models
take in structural information, neighborhood information, or extra information outside the KGs,
we can further classify the existing models to three major categories, namely the embedding-based
methods (Group A), the neighborhood information-based methods (Group B), and methods using
extra information beyond structures (Group C).

2.2.1 Embedding-BasedMethods. Embedding-based models learn KG embeddings from the em-
bedding characteristic, which view the relations between entities as translations between the head
and the tail entity.
For multilingual entity alignment tasks specifically, JE [19] and MTransE [10] are the earliest

classic models belonging to this category. JE [19] only uses the structure of KGs to learn a unified
vector space for different KGs. MTransE [10] built on top of TransE is a significant work that
separately embeds the entities and relations of the individual language into an embedding space,
then maps them into a multilingual counterparts by learning its transitions and minimizing the
distance between embeddings of seed alignments in different KGs. To exploit the unlabeled data
to a deeper level, IPTransE [98] optimizes the MTransE model by applying iterative methods to
add new alignments as training data. Then it maps the entities and relations of different languages
with same parameters into the unified vector space.

As labeled data are very limited among the KGs, there has been a trend leveraging semi-
supervised learning, co-training, and bootstrapping methods to exploit the unlabeled data more
effectively. SEA [54] proposed a semi-supervised entity alignment method (SEA) to bring both the
information from labeled entities and unlabeled entities into analyses for the entity alignment task.
BootEA [67] uses the improved KGE methods with limit-based loss and a bootstrapping technique
to solve the problem of lacking labeled data in entity alignment tasks. Similar to IPTransE [98], it
also applies iterative methods to add new alignments as training data.
Other embedding-based methods include AKE [34], which uses an adversarial knowledge em-

bedding to jointly learn the representation, alignment mapping, and adversarial modules; MMEA
[61], which uses a new multiplicative approach to jointly model entities and relations from dif-
ferent KGs; JarKA [7], which leverages the attributes to learn entity embeddings; and OTEA [56],
which uses an optimal transport-based method to dually optimize entity-level and group-level
losses.

2.2.2 Neighborhood Information Based Methods. More recently, our research community
proposed more graph-based methods to aggregate neighborhood information to enrich the
embeddings for KGs. GM [89] represents the entities and their neighbors as topic entity graphs
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and views the entity alignment task as a graph matching problem. And they use a graph atten-
tion based method to match all entities in two topic entity graphs. KECG [32] adopts GATs [71]
with sharing parameters to embed entities in different KGs into a unified vector space and jointly
applies TransE [5] to implicitly complete different KGs.
MuGNN [6] uses a rule-based method to complete KGs and uses multiple channel graph atten-

tion to reconcile the structural differences between two KGs. AliNet [68] uses gated and atten-
tion mechanisms to aggregate multi-hop neighborhood information. In other words, it takes the
heterogeneity and differences existing among counterpart entities neighbors into consideration,
and expands the overlaps between entities neighborhood structures to an attention-based distant
neighbors. The final entity alignment is achieved with a gating mechanism among distant and
direct neighbors, along with a relation loss calculation to improve entity representations. HGCN-
JE [81] approximates relation embeddings by using entity embeddings learned by GCN [27] and
jointly learns better representations for both entities and relations.
MRAEA [41] uses a relation-aware self-attention mechanism to learn relation-aware represen-

tations and adopts a bidirectional iterative strategy to iteratively add new alignments for training.
NAEA [99] designs an attention mechanism to gather neighborhood information at the neigh-
borhood subgraph level and introduces an NAEA neighborhood-aware attentional representation
method to learn the neighborhood representations. RDGCN [80] uses GCN [27] to incorporate
relation information by taking advantage of relation interactions between KG and its dual relation
counterpart. GM-EHD-JEA [88] uses an easy-to-hard decoding strategy to iteratively predict new
alignments as additional inputs and a joint entity alignment algorithm to address the many-to-one
problem. NMN [82] applies GCNs and a neighborhood sampling method to capture informative
neighborhood features. REA [55] uses a reinforced training approach to deal with the noise labels
in the entity alignment task. SSP [52] uses GCNs and a translation-based model to capture both
global and local features. HyperKA [64] extends the GCNs from Euclidean space to hyperbolic
space to better model hierarchical structures of KGs. AttrGCN [38] uses an attributed GNN to
learn attribute triples and relation triples in a unified framework.
CAECGAT [86] is a contextual alignment enhanced cross-GAT method introduced for cross-

lingual entity alignment. Our preliminary study designs the system to jointly learn embeddings in
different KGs by using pre-aligned seeds to propagate the information across KGs. However, we
find that propagating information for multi-hop neighbors and making full use of the pre-aligned
entity pairs in both training and prediction stages are very important. The model performance
could be further improved if we conduct further investigation. Thus, we plan to extend our CAEC-
GAT study in the following three ways: (1) we propose DuGa-DIT for cross-lingual entity align-
ment, which can learn cross-KG embeddings to bridge the semantic gap between different KGs by
transferring information cross-KGs and can work well with iterative training method by dynami-
cally updating the cross-KG attention score matrices; (2) we dive deeper to run the experiments on
more datasets and on various scenarios; and (3) we analyze the related work from both the KGE
tasks perspective and the cross-lingual entity alignment perspective with a case study on person-
alized search and recommendation. Different from the previous neighborhood matching methods
(e.g., [82, 89]) that match the one-hop neighbors between two sub-graphs, our DuGa-DIT is able to
propagate multi-hop neighborhood information and cross-KG alignment information. There are
other related models that belong to this category (e.g., [2, 45, 53, 58, 95]).

2.2.3 Methods Using Extra Information Beyond Structures. Aside from the two approaches
discussed earlier, there have also been some methods designed to take in extra information,
such as attribute and entity description, beyond structures. JAPE [66] takes advantage of both
structural information and attribute information in different language KGs and learns the entity
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representations in a joint manner. GCN-Align [76] incorporates entity and attribute information
and uses GCN [27] to learn neighborhood information for entities and directly learn cross-KG
equivalent relationships between entities. HMAN [92] employs multiple aspects including struc-
ture, relations, and attributes to learn entity embeddings. They also use literal descriptions of en-
tities and fine-tune pre-trained multilingual BERT [12] to further improve the performance. How-
ever, their method requires extra entity descriptions, and the best results reported in their model
are obtained by combining HMAN an BERT models. For fair comparison, we only compare with
the results of a single HMAN model without combining the BERT model. KDCoE [9] presents the
co-training of two parallel embedding models, namely the cross-lingual KGE model and the cross-
lingual description embedding model. Aside from that, JarKA [7] takes in attribute information to
perform the multilingual entity alignment task.

2.2.4 Summary and Comparison. In general, the three categories of learning algorithms afore-
mentioned have their own advantages and limitations. Embedding-based models are the simplest
in structure, but the shallow structures of these models pose certain restrictions on their model
expressiveness. Neighborhood information based models generally show good performance on en-
tity alignment task and link the prediction task by aggregating neighborhood information. How-
ever, most of these models are designed to capture neighborhood information from fixed graphs,
which largely restricts the capability of capturing relation-specific multi-hop neighboring features
for different relations. For those methods using extra information beyond structures, the biggest
challenge is that the extra information data might not be available all the time. In most of the
real-world applications, extra information is either not available or cannot be used. Therefore, no
matter how good the models are designed, the applicability of them is largely affected. Table 1
summarizes the major methods of these three groups involved in this study.
Unlike all the methods described earlier, our proposed DuGa-DIT is able to learn cross-KG em-

beddings and to bridge the semantic gaps between different KGs by leveraging both neighborhood
features and cross-KG alignment information. The dynamic iterative training process in our model
allows the cross-KG attention score matrices to update dynamically by iteratively adding new seed
alignments. This design makes more cross-KG information able to transfer across different KGs ef-
fectively. Furthermore, our model purely relies on neighborhood features and cross-KG alignment
information to perform, without requiring additional extra information to boost the performance.

3 APPROACH

In this section, we aim to elaborate on our proposed DuGa-DIT model. We first describe the nota-
tions we are going to use in the rest of the article alongwith an overview of the system architecture.
Then, we present the two attention layers, namely the intra-KG attention and the cross-KG atten-
tion, and the gated feature update that can yield new entity embeddings from the preceding two
layers. Last, we also show the optimization, prediction, and dynamic iterative training processes
adopted in our method.

3.1 Problem Formulation

In this section, we describe some preliminaries related to our work and give the problem formula-
tion of our work.
Some basic definitions are presented as follows:

• A knowledge graph is a data structure comprised of entities, relations, and triples, and is rep-
resented asG = (E,R,T ),where E stands for a collection of entities, R stands for a collection
of relations, and T stands for a collection of triples.
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Table 1. Summary of the Multilingual Entity Alignment Models Involved in This Study

Groups Methods Embedding Model Extra Information Initialization

Group A

JE TransE No Random
MTransE TransE No Random
IPTransE TransE No Random
BootEA TransE No Random
MMEA ComplEx No Random
OTEA TransE No Random

Group B

KECG GNN+TransE No Random
MuGNN GNN No Random
AliNet GNN No Random

HyperKA GNN No Random
NAEA TransE No Random
SSP GNN+TransE No Random

MRAEA GNN No Random
GM GNN No Pre-trained

RDGCN GNN No Pre-trained
HGCN-JE GNN No Pre-trained
NMN GNN No Pre-trained

GM-EHD-JEA GNN No Pre-trained
CAECGAT GNN No Pre-trained
AttrGCN GNN No Pre-trained

Group C

JAPE TransE Attribute Random
GCN-Align GNN Attribute Random

JarKA TransE Attribute Random
HMAN GNN Attribute Random
KDCOE TransE Description Random

• Cross-lingual KG entity alignment refers to the task of two KGs G1 = (E1,R1,T1) and G2 =

(E2,R2,T2) with different languages, and entity alignment is the task of deriving a set of high
precision and high recall pairs of entities (e1, e2) ∈ (E1 × E2) where these two pairs thus can
be referred to the same real-world entities.

3.2 Overview

As depicted in Figure 2, the structure of the proposed DuGa-DIT is composed of multiple dual
KG attention layers. Each dual KG attention layer consists of a cross-KG attention layer and an
intra-KG attention layer. With two different KGs G1 and G2 as input, as well as a collection of
seed links between two KGs, we use intra-KG attention to collect neighborhood features and use
cross-KG attention to gather useful alignment information from another KG. Thus, we can obtain
information for both intra-KG structure and cross-KG alignment. Multiple dual KG attention layers
can be stacked to aggregate multi-hop features. Furthermore, we use a dynamic iterative training
process to dynamically update cross-KG entity alignments, which allows our model to gather more
cross-KG alignment features. The main notations of this article are listed in Table 2.
Formally, given two different KGs G1 = (E1,R1,T1) and G2 = (E2,R2,T2), and a set of seed

alignments A = {(e1, e2) |e1 ∈ E1, e2 ∈ E2}, in this article, we represent the entities in the two KGs
as k-dimensional embedding matrices E1 and E2. During training, we split all the seed alignments
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Fig. 2. The architecture of the proposed DuGa-DIT. The dual KG attention layer consists of an intra-KG

attention layer and a cross-KG attention layer. The intra-KG attention layer is used to learn neighborhood

features for each KG. And the cross-KG attention layer is employed to collect alignment information across

two KGs. By stacking multiple dual KG attention layers, the local neighborhood and cross-KG alignment

information can be propagated to multi-hop neighbors.

into a set of contextual seed alignments Actx and a set of objective seed alignments Aobj . The
contextual seed alignments inActx are used as bridge to transfer information across different KGs.
Thus, the cross-KG information provided byActx can be used as contextual alignment information
to predict the matching scores for the entity pairs in objective seed alignments in Aobj .

3.3 Intra-KG Attention

Recently, GNNs have shown promising potential in the cross-lingual KG entity alignment task
due to their ability of learning local structure in KG data. In this study, we use an attention-based
graph attention mechanism to learn the features from each monolingual KG, which is called the
intra-KG attention layer.

Given two KGs G1 and G2, let Ml
1 and M

l
2 denote the normalized attention matrices for G1 and

G2. The intra-KG attention layer is used to update entity embeddings for each KG by aggregating
important neighborhood features, which can be denoted as follows:

H
l+1
1 = σ

(
M

l
1E

l
1W

l
)

H
l+1
2 = σ

(
M

l
2E

l
2W

l
)
,

(1)

whereWl is the transformation parameters and σ is the activation function (e.g., Relu [17]), and l
denotes the l-th layer.
The normalized attention matrices are computed by using GATs, which first compute the score

for each neighbor entity and then normalize the scores for all neighbors. Specifically, each element
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Table 2. Notation List

Notation Description
G1,G2 The KGs in different languages.
E1,E2 The entities in G1 and G2.
R1,R2 The relations in G1 and G2.
T1,T2 The triples in G1 and G2.
A The seed alignments.
Actx ,Aobj The contextual and objective seed alignments.
Anewctx ,A

new
obj

The newly added contextual and objective seed alignments.

E1,E2 The initial entity embeddings forG1 and G2.
E
L
1 ,E

L
2 The final entity embeddings for G1 and G2.

L The number of dual KG attention layers.
e1, e2 The initial entity vectors for e1 ∈ G1 and e2 ∈ G2.
ē1, ē2 The final entity vectors for e1 ∈ G1 and e2 ∈ G2.
Nei A set of neighbors for entity ei .
M1,M2 The intra-KG attention score matrices for G1 and G2.
M12 The cross-KG attention score matrices from G1 to G2.
M21 The cross-KG attention score matrices from G2 to G1.
H
l
1,H

l
2 The neighborhood features for G1 and G2 obtained by the l-th intra-KG attention layer.

C
l
1,C

l
2 The cross-KG alignment features forG1 and G2 in the l-th cross-KG attention layer.

L (ϕ;Aobj ) The loss function of the proposed DuGa-DIT model.
ϕ The trainable parameters in the model.
D (ē1, ē2) The L1 distance between entity vectors ē1 and ē2.

inM
l
1 is computed as follows:

M
l
1[i, j] =

exp(sli, j )∑
j′ exp(s

l
i, j′ )
, (2)

where sli, j is the attention score between the i-th and j-th entities, which is computed as

sli, j =
⎧⎪⎨⎪⎩
LeakyRelu

(
v
T
[
e
l
i | |elj

] )
ej ∈ Nei

−∞ otherwise
, (3)

where LeakyRelu [39] is an activation function that is widely used in the graph attention layer,
v is the attention vector, Nei is a set of neighbors for entity ei , and ei and ej are the vectors for
entities ei and ej , respectively. The normalized attention matrix M

l
2 for G2 can be computed in a

similar manner.

3.4 Cross-KG Attention

The intra-KG attention layer can only capture local structure features from mono-lingual KG,
which is not sufficient for the entity alignment task. In this section, we present a novel cross-KG
attention layer aiming to aggregate cross-KG alignment information by applying graph attention
across two KGs. In this study, we take full advantage of the pre-aligned seed alignments and view
them as edges linking between two KGs.
Formally, given the contextual alignmentsActx , we can construct cross attention matrices from

G1 toG2 and fromG2 toG1 using the cross-KG attention layer. LetM12 denote the attention matrix
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from G1 to G2. Each element in M12 is obtained as follows:

M
l
12[i, j] =

exp(cli, j )∑
j′ exp(c

l
i, j′ ) + δ

, (4)

where δ = 1e−8 is a smoothing factor and cli, j is the cross-KG attention score between the i-th
entity in G1 and the j-th entity in G2, which is calculated as follows:

cli, j =
⎧⎪⎨⎪⎩
LeakyRelu

(
v
T
[
e
l
1i | |el2j

] )
(e1i , e2j ) ∈ Actx

−∞ otherwise
, (5)

where e1i is the i-th entity in G1 and e2j is the j-th entity in G2, and e
l
1i and e

l
2j are the vector

representations of e1i and e2j in the l-th layer, respectively.
Thus, we can collect cross-KG alignment features for G1 by applying graph attention on the

attention score matrix M12, which is denoted as follows:

C
l+1
1 = σ

(
M

l
12E

l
2W

l
c

)
, (6)

whereWl
c represents the linear transformation parameters in the cross-KG attention layer.

Similarly, the cross-KG alignment features for G2 is computed as follows:

C
l+1
2 = σ

(
M

l
21E

l
1W

l
c

)
, (7)

whereM21 is the attention score matrix from KGG2 toG1, which is obtained in a similar way with
M12.
By applying the cross-KG attention, we can enable the equivalent entities in two KGs to share

some common cross-KG features. And these cross-KG features can be propagated in the two KGs,
which will benefit the entity alignment task.

3.5 Gated Feature Update

Intuitively, the neighborhood features are resourceful information to model the structure of a sin-
gle KG locally, whereas the cross-KG features are resourceful information to transfer alignment
features between two KGs globally. In this way, the semantic difference can be largely alleviated.
Therefore, both the neighborhood and the cross-KG alignment features are critical for the task of
entity alignment. In our model, we incorporate these two kinds of features into a gated feature
update mechanism to update the entity embeddings effectively. Given the preceding discussion,
the update rule of our DuGa-DIT model can be formulated as follows:

E
l+1
1 = H

l+1
1 · д1 + Cl+1

1 · (1 − д1)
E
l+1
2 = H

l+1
2 · д2 + Cl+1

2 · (1 − д2),
(8)

where · is the element-wise multiplication, and д1 and д2 are the gate mechanisms for G1 and
G2, respectively, which are obtained by concatenating the neighborhood features and cross-KG
alignment features, and followed by a non-linear transformation:

д1 = θ (Wд

[
H
l+1
1 | |Cl+1

1

]
+ bд )

д2 = θ (Wд

[
H
l+1
2 | |Cl+1

2

]
+ bд ),

(9)

where θ denotes the sigmoid function, andWд and bд are trainable parameters.
In our study, we stack L dual KG attention layers to propagate both neighborhood features and

cross-alignment features. Finally, our model can yield new entity embeddings EL1 and E
L
2 .
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3.6 Optimization and Prediction

The cross-lingual entity alignment task aims to learn close representations for equivalent entities
in KGs with different languages. Different from those existing methods, we use the contextual seed
alignments as input and use the objective seed alignments to optimize the parameters. The loss
function in this study is defined as follows:

L (ϕ;Aobj ) =
∑

(e1,e2 )∈Aob j
[D (ē1, ē2) + λ − D (ē1, ē

−
2 )]+

+
∑

(e1,e2 )∈Aob j
[D (ē1, ē2) + λ − D (ē−1 , ē2)]+

, (10)

where [x]+ = max {0,x }, ϕ denotes the parameters in the DuGa-DIT model, (e1, e−2 ) and (e−1 , e2)
are the negative entity alignment pairs obtained by randomly replacing the positive entity e1 or
e2, ē1 ∈ EL1 and ē2 ∈ EL2 are the vectors of e1 and e2, D (ē1, ē2) = | |ē1 − ē2 | |1 denotes the L1 distance
function, and λ > 0 is the margin hyper-parameter.

3.7 Dynamic Iterative Training

In practice, the seed alignments are always insufficient, making it difficult to train effective align-
ment models. And the lack of seed alignments makes the cross-KG attention score matrixM12 and
M21 sparse, which cannot capture enough cross-KG alignment features. Inspired by existing meth-
ods [41, 67, 88, 98] that iteratively add new alignment predicted by the trained model, we propose
to use an iterative method to dynamically update the contextual seed alignments and objective
seed alignments. We adopt the bidirectional iterative strategy [41] to select newly aligned entity
pairs, namely if and only if ei and ej are mutual nearest to each other, the entity pair (ei , ej ) will be
considered as a new alignment. Note that a significant difference with previous works is that our
model uses the newly added entity alignment to dynamically update both the cross-KG attention
score matrices and objective function.
Formally, letAnew

ctx denote the newly added contextual seed alignments, then each attention score
cli, j for cross-KG attention score matrix Ml

12 can be updated as follows:

cli, j =
⎧⎪⎨⎪⎩
LeakyRelu

(
v
T
[
e
l
1i | |el2j

] )
(e1i , e2j ) ∈ Actx

⋃
Anew
ctx

−∞ otherwise
. (11)

The cross-KG attention matrixMl
21 can be updated in a similar manner. Thus, our model can learn

richer cross-KG alignment information. Furthermore, we add new objective seed alignmentsAnew
obj

to update the objective function as L (ϕ,Aobj
⋃
Anew
obj

).
To better understand the proposedDuGa-DITmodel, we describe the details of DuGa-DITmodel

in Algorithm 1. At the first iteration, we set Anew as an empty set, which is shown in line 1. Note
that we dynamically split the seed alignments into Actx and Aobj during training, which enables
us to make full use of the seed alignments to train the model, as shown in lines 5 and 6. Then, we
use L dual KG attention layers to update the entity embeddings, which is described from line 7
to line 12. And in lines 13 and 14, we use Aobj and Anew

obj
to compute the objective function and

optimize the parameters of the DuGa-DIT model. After training the model, we predict new seed
alignment to update Anew and use the new Anew for the next iteration.
During prediction, we set Actx = A

⋃
Anew , which is shown in line 18. For a given test entity

e1 (or e2) in from KG G1 (or G2), we rank all entities in another KG G2 (or G1) according to the L1
distance computed by using the entity vectors EL1 and E

L
2 by the DuGa-DIT model.
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ALGORITHM 1: DuGa-DIT Model

Input: Given two KGs G1 and G2, the initial entity embeddings E1, E2, and pre-aligned seed alignments A.
Output: The final entity embeddings EL1 and E

L
2 .

1: Initialize Anew as an empty set.
2: repeat

3: Let E01 = E1 and E
0
2 = E2.

4: repeat

5: Randomly choose some seed alignments from A as Aobj and the rest as Actx .
6: Randomly choose some seed alignments from Anew as Anew

obj
and the rest as Anewctx .

7: for l = 1 to L do

8: Perform intra-KG attention and cross-KG attention and obtain H l
1, H

l
2, C

l
1, and C

l
2

9: Update entity embeddings:
10: E

l
1 = H

l
1 · д1 + Cl1 · (1 − д1);

11: E
l
2 = H

l
2 · д2 + Cl2 · (1 − д2);

12: end for

13: Compute loss function L (ϕ;Aobj ⋃Anew
obj

).

14: Optimize parameters ϕ in the DuGa-DIT model.
15: until reaching the maximum number of training epochs
16: Predict new seed alignments and update Anew .
17: until reaching the maximum number of iterations
18: Set Actx = A

⋃
Anew .

19: Use the learned DuGa-DIT model to predict the final entity embeddings EL1 and E
L
2 .

4 EXPERIMENTS

In this section, we describe the datasets used in this study and conduct extensive experiments on
the cross-lingual entity alignment task. In the following sections, we show the detailed experimen-
tal results.

4.1 Datasets

In our experiments, we use two benchmark datasets to evaluate our proposed DuGa-DIT model:
DBP15K [66] and WK31-60K [9, 10]. Both DBP15K and WK31-60K contain abundant node at-
tributes and edges of different relations. We present the detailed statistics of the selected datasets
in Table 3 and introduce the two datasets in depth as follows:

• The DBP15K dataset contains four KGs with different languages (e.g., English, Chi-
nese, Japanese, and French), which are extracted from DBpedia [31]. Three cross-lingual
subsets are constructed based on these KGs, namely DBP15KZH−EN (Chinese-English),
DBP15KJA−EN (Japanese-English), and DBP15KFR−EN (French-English). There are 15,000
inter-lingual links connecting between two KGs.
• The WK31-60K dataset contains three KGs from DBpedia (e.g., English, French, and Ger-
man). Each KG contains about 60K entities. Two cross-lingual entity alignment subsets are
constructed upon WK31-60K, namely WK-60KFR−EN (French-English) and WK-10kFR−DE
(German-English).

4.2 Implementation Details

4.2.1 Hyper-Parameters. For fair comparison, we apply the same data split as various previ-
ous works [66, 92], namely 70% for testing and 30% for training. We further sample 10% of the

ACM Transactions on Information Systems, Vol. 40, No. 3, Article 44. Publication date: November 2021.



44:16 Z. Xie et al.

Table 3. Statistics of the Datasets

Dataset Entities Relations Rel. Triples Training/Dev/Test

DBP15KZH−EN
Chinese 66,469 2,830 153,929

4,050/450/10,500
English 98,125 2,317 237,674

DBP15KJA−EN
Japanese 65,744 2,043 164,373

4,050/450/10,500
English 95,680 2,096 233,319

DBP15KFR−EN
French 66,858 1,379 192,191

4,050/450/10,500
English 105,889 2,209 278,590

WK31-60KFR−EN
French 45,255 277 258,337

14,095/1,566/36,544
English 64,539 458 569,393

WK31-60KFR−DE
German 43,503 172 244,647

14,451/1605/37,467
English 64,539 458 569,393

Table 4. Hyper-Parameter Setting

Datasets λ L #neg dropout lr batch_size #iter
DBP15KZH−EN 3 2 30 0.2 0.002 2,000 2
DBP15KJA−EN 3 2 30 0.2 0.002 2,000 2
DBP15KFR−EN 3 2 30 0.2 0.002 2,000 2

WK31-60KFR−EN 3 2 50 0.2 0.004 3,000 2
WK31-60KDE−EN 3 2 50 0.2 0.004 3,000 2
“#neg” denotes the number of negative entity pairs, “lr” denotes the learning rate, and
“#iter” denotes the number of dynamic iterative training processes.

training data as the development set to select proper hyper-parameters and use the remaining
90% for training. The statistic of the data splitting is shown in Table 3. We apply Adam [26] to
optimize the parameters in the model, and we train the model up to 3,000 epochs. The hyper-
parameters are selected by using grid search according to the Hits@1 on the development set.
We select the number of negative entity pairs from {10, 20, 30, 40, 50}, the margin parameter λ in
Equation (10) from {1, 3, 5}, the number of dual KG attention layers from {1, 2, 3}, the dropout
rate from {0.1, 0.2, 0.3}, and the batch size from {500, 1000, 1500, 2000, 3000} and the learning rate
from {0.004, 0.002, 0.001, 0005}. Finally, we randomly sample 30 negative alignment entity pairs
for DBP15K and 50 negative entity pairs for WK31-60K. The margin parameter in Equation (10) is
set to λ = 3. We stack two dual KG attention layers to propagate multi-hop cross-KG information.
The learning rate is set to 0.002 for DBP15K and 0.004 for WK31-60K. The dropout rate is set to 0.2.
The batch size is set to 2,000 for DBP15K and 3,000 forWK31-60K. The maximum iteration number
of the dynamic iterative training process is 2. The best hyper-parameters of the DuGa-DIT model
are listed in Table 4.

4.2.2 Initialization. There are two commonly usedmethods to initialize the EAmodels: random
initialization and the initialization with pre-trained word vectors of the entity name. The random
initialization method randomly initializes the entity embedding without considering the entity
name. However, the surface form of the entity name also provides useful information for the cross-
lingual entity alignment task, especially for the entity with few neighbors in KG. Therefore, many
methods consider the entity name to initialize the entity embedding, which translates the entity
name into English form and then uses the sum of word vectors of the entities’ surface name as
the entity embedding [80–82, 89]. In this work, we use the preceding two ways to initialize the
entity embedding. If the words in the entity are out-of-vocabulary in the pre-trained embedding,
we initialize them using random vectors.
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4.2.3 Evaluation. We report the widely used standard metric Hits@N (H@N ) and MRR to mea-
sure the performance of our model, where Hits@N denotes the correct alignment proportion
ranked in the top N list and MRR denotes the mean reciprocal rank of the entity alignment. Higher
Hits@N and MRR mean better performance. To compare with previous studies, we report Hits@1
(H@1), Hits@10 (H@10), and MRR on DBP15K, and report one more metric, Hits@5 (H@5), on
WK31-60K.

4.2.4 Implementation. All experiments reported in this study are conducted on NVIDIA GTX
1080Ti GPUs, and the codes are implemented using TensorFlow.5 To facilitate the reproduction
of the results in this article, the datasets and source codes will be available at https://github.com/
JuneTse/EntAlignment.

4.3 Comparison Models

To investigate the power of the our proposed DuGa-DIT model, we compare the proposed method
with a large amount of baselines described in the literature. According to the initializationmethods,
we separate results by baselines with and without pre-trained word vectors into two completely
different evaluation settings. These related methods for multilingual entity alignment can roughly
be divided into three categories: embedding-based methods (Group A), neighborhood information
based methods (Group B), and methods using extra information beyond structures (Group C).

4.3.1 Embedding-Based Methods (Group A). The basic idea of embedding-based methods for
entity alignment is to learn low-dimensional vectors for entities in different KGs and match enti-
ties by computing similarities between entity vectors. We compare our method with the existing
embedding-based methods listed as follows: JE [19], MTransE [10], MMEA [61], and OTEA [56].
For methods in this category but leveraging bootstrapping methods to exploit the unlabeled data,
these methods include BootEA [67] and IPTransE [98]. Other embedding-based methods for com-
parison include MMEA [61] and OTEA [56].

4.3.2 Neighborhood Information Based Methods (Group B). Recently, approaches using neigh-
borhood information have achieved powerful feature learning ability for graph data and have
demonstrated the superiority over embedding-based methods. Therefore, we compare our DuGa-
DIT method with various related neighborhood information based baselines: KECG [32], MuGNN
[6], AliNet [68], HyperKA [64], NAEA [99], SSP [52], GM [89], GM-EHD-JEA [88], RDGCN [80],
HGCN-JE [81], NMN [82], MRAEA [41], AttrGCN [38], and CAECGAT [86].

4.3.3 Methods Using Extra Information Beyond Structures (Group C). Aside from the two
approaches discussed earlier, we have also compared our model performance to those methods
taking in extra information beyond structures: JAPE [66], GCN-Align [76], JarKA [7], and HMAN
[92] and KDCoE [9].

We include the aforementioned models for comparison, except for AKE [34] and REA [55], since
both models use different datasets and experimental settings.

4.4 Main Results

The cross-lingual entity alignment results on DBP15K are summarized in Table 5. We compare our
method with various strong baselines. We analyze the methods within each group and compare
them with our proposed DuGa-DIT model.

5https://tensorflow.org.
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Table 5. Entity Alignment Results on the DBP15K Dataset

DBP15KZH−EN DBP15KJA−EN DBP15KFR−EN
Groups Methods H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR

Group A

JE 21.27 42.77 – 18.92 39.97 – 15.38 38.84 –
MTransE 30.83 61.41 0.364 27.86 57.45 0.349 24.41 55.55 0.335
IPTransE 40.60 73.50 0.516 36.70 69.30 0.474 33.30 68.50 0.451
BootEA 62.94 84.75 0.703 62.23 85.39 0.701 65.30 87.44 0.731
MMEA 68.07 86.74 – 65.53 85.90 – 67.70 89.01 –

Group B

KECG 47.77 83.50 0.598 48.97 84.40 0.610 48.64 85.06 0.610
MuGNN 49.40 84.40 0.611 50.10 85.70 0.621 49.50 87.00 0.621
AliNet 53.90 82.60 0.628 54.90 83.10 0.654 55.20 85.20 0.657

HyperKA 57.20 86.50 0.678 56.40 86.50 0.673 59.70 89.10 0.704
NAEA 65.01 86.73 0.720 64.14 87.27 0.718 67.32 89.43 0.752
SSP 73.90 92.50 0.808 72.10 93.50 0.800 73.90 94.70 0.818

MRAEA 75.70 92.98 0.827 75.78 93.38 0.826 78.04 94.81 0.849
DuGa-DIT (rand) 75.62 85.78 0.805 78.11 91.36 0.829 83.73 91.97 0.867

GM‡ 67.93 78.48 – 73.97 87.15 – 89.38 95.24 –
GM-EHD-JEA‡ 73.58 – – 79.15 – – 92.43 – –

RDGCN‡ 70.75 84.55 – 76.74 89.54 – 88.64 95.72 –
HGCN-JE‡ 72.03 85.7 – 76.62 89.73 – 89.16 96.11 –
NMN‡ 73.30 86.90 – 78.50 91.20 – 90.20 96.70 –

CAECGAT‡ 75.55 93.38 0.818 83.58 95.59 0.881 94.68 99.18 0.965
AttrGCN‡ 79.60 92.93 0.845 78.33 92.08 0.834 91.85 97.77 0.910

DuGa-DIT ‡ 80.73 88.17 0.832 91.44 95.21 0.928 98.17 99.22 0.985

Group C

JAPE 41.18 74.46 0.490 36.25 68.5 0.476 32.39 66.68 0.430
GCN-Align 41.25 74.38 0.549 39.91 74.46 0.546 37.29 74.49 0.532
HMAN 56.20 85.10 – 56.70 86.90 – 54.00 87.10 –
JarKA 70.58 87.81 0.766 64.58 85.50 0.708 70.41 88.81 0.768

The results of the baselines are directly taken from the original papers. ‡ denotes the models using pre-trained word
vectors as the initialization method. DuGa-DIT (rand) is the model using the random initialization. The best results
are in bold, and the second best results are in underline.

Group A. As shown in Table 5 (Group A), among the various embedding-based methods,
MMEA achieves the best results on H@1 and H@10 metrics. Compare to other embedding-based
methods, MMEA defines a multiplication-based scoring function to deal with the 1-N, N-1, and
N-N relations. This enables it to perform better than other embedding-based methods. Both
IPTransE and BootEA models also obtain good results by using the bootstrapping strategy to
iteratively add all possible entity pairs to train.

Group B. From the results (Group B) reported in Table 5, We evaluate these models using two
completely different settings (random initialization vs. pre-trained word vectors as initialization).
From the results (Group B) reported in Table 5, we can see that those GNN-based models achieve
the promising results (SSP, MRAEA, GM-EHD-JEA, HGCN-JE, CAECGAT, etc.). The reason lies in
that GNN-based models can effectively leverage neighborhood features. We also note that using
bootstrapping strategies to iteratively train the model can further improve the performance (e.g.,
CAECGAT vs. DuGa-DIT). Furthermore, we find that our proposed DuGa-DIT (rand) obtains the
comparable performance compared to the best reported MRAEA under the random initialization
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setting. When using the pre-trained word vector initialization, our DuGa-DIT obtains the best
results (H@1, H@10, and MRR) on DBP15KFR−EN , H@1 on DBP15KZH−EN , and H@1 and MRR
on DBP15KJA−EN . Regarding the comparison between these two settings, we observe that most
models using the pre-trained initialization have better performance than the models using the
random initialization.

Group C. The methods in Group C enhance the performance of entity alignment by leveraging
extra information, such as attribute and entity description. Among these methods listed in Group
C, JAPE, JarKA, and KDCoE use embedding-based methods to encode the KG structure, whereas
others use GNN-based methods. Surprisingly, we find that all of these methods in this category
cannot obtain very large performance gains. The reason is that such extra information may be
very noisy, which can hurt the performance to some extent.

Comparison across groups. As shown in Table 5, we have three interesting findings. First, neigh-
borhood information basedmethods, which are able to leverage rich neighboring features, perform
better than the simple embedding-based method (e.g., Group B vs. Group A). Second, the surface
names of entities play a more important role than the extra attribute information (e.g., Group B vs.
Group C). Third, the models with an iterative method obtain large performance gains than those
without using an iterative method (e.g., BootEA vs. MTransE in Group A and GM-EHD-JEA vs.
GM in Group B).

Analysis of our DuGa-DIT model. Since we use GNN-based methods to aggregate neighborhood
features, our proposed DUGa-DIT model can be classified into Group B. For fair comparison, we
also provide a version of our DuGa-DIT model with the random initialization method denoted as
DuGa-DIT (rand). As shown in Table 5, compared to other state-of-the-art methods using random
initialization, such as SSP and MRAEA, DuGa-DIT (rand) obtains comparative results on these
datasets. Furthermore, by using the pre-trained word vectors as initialization, the proposed DuGa-
DIT model performs much better than previous state-of-the-art methods on all the three cross-
lingual entity alignment datasets except the H@10 and MRR on DBP15KZH−EN and the H@10
on DBP15KJA−EN . For example, the proposed DuGa-DIT outperforms the CAECGAT by a margin
of 7.68% on H@1 for DBP15KJA−EN and an improvement of 3.49% on H@1 for DBP15KFR−EN .
We also conduct the statistical significant using the t-test, and the results show that DuGa-DIT
significantly outperforms CAECGAT and DuGa-DIT (rand) under the evaluation metric H@1with
confidence of p < 0.5.
Compared to existing methods, our DuGa-DIT model not only takes advantage of neighboring

features from intra-KG but also makes full use of the cross-KG alignment information using cross-
KG attention. Furthermore, by utilizing the dynamic iterative training process, we can dynamically
update the cross-KG attention score matrices in our model, which can provide more cross-KG
alignment information. These advantages enable our model to learn better entity representations
for the entity alignment task.

Impact of the initialization. Various studies in the literature have verified that the surface forms
of the entity name can provide useful information for entity alignment [80–82, 86, 89]. Therefore,
many state-of-the-art methods leverage the word vectors of entities’ surface forms to initialize the
entity embedding, including GM, GM-EHD-JEA, RDGCN, HGCN-JE, NMN, AttrGCN, and CAEC-
GAT. Following these previous methods, we also initialize the entity embedding using pre-trained
word vectors of entity names (e.g., DuGa-DIT). To investigate the impact of different initialization
methods, we report the results using a random initialization method (e.g., DuGa-DIT (rand)). As
shown in Table 5, the models using entity names achieve better results than most of the methods
without considering the entity name (e.g., HGCN-JE vs. AliNet, DuGA-DIT vs. DuGa-DIT (rand)).
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Table 6. Entity Alignment Results on WK31-60K Dataset

WK31-60KFR−EN WK31-60KDE−EN
Groups Methods H@1 H@5 H@10 MRR H@1 H@5 H@10 MRR

Group A

MTransE 13.95 20.25 – 0.177 3.37 10.07 – 0.072
JAPE 16.85 35.41 – 0.271 14.71 23.86 – 0.192

BoostEA 33.31 51.14 – 0.425 23.28 39.29 – 0.316
OTEA 36.07 54.08 – 0.447 26.97 43.97 – 0.352

Group B

GCN-Align 21.47 37.81 – 0.293 13.8 24.55 – 0.190
MRAEA 54.34 76.03 – 0.646 42.76 62.77 – 0.524
SSP 62.67 76.64 81.11 0.693 60.55 77.01 80.46 0.684

DuGa-DIT (rand) 66.12 78.32 80.84 0.718 59.67 75.12 77.64 0.669
RDGCN‡ 77.91 91.72 93.31 0.843 70.87 85.37 86.74 0.776
HGCN-JE‡ 76.59 90.26 93.85 0.834 71.91 85.67 86.71 0.781
NMN‡ 77.63 91.25 92.66 0.841 70.91 85.59 86.75 0.778

CAECGAT‡ 78.24 92.23 95.23 0.852 71.41 87.20 89.26 0.788
DuGa-DIT‡ 84.69 95.06 95.47 0.897 73.67 85.99 86.84 0.796

Group C KDCoE 48.32 – 56.95 0.496 33.52 – 45.47 0.349
‡ denotes the models using pre-trained word vectors as initialization methods. DuGa-DIT (rand) is the model using
random initialization.

Since the equivalent entities in a different language always share some common words in their
translated surface forms, these surface forms can provide useful information to align some easy
entity pairs. Compared to these methods that also use entity names, our DuGa-DIT achieves better
results (CAECGAT vs. DuGa-DIT and AttrGCN vs. DuGa-DIT regarding the evaluation H@1).

We also conduct the experiments on WK31-60K, which is larger and more challenging than
DBP15K, as shown in Table 6. Since RDGCN, HGCN-JE, NMN, SSP, and CAECGAT in the original
works do not provide the results on WK31-60K, we report the results of these methods by run-
ning the source codes. From Table 6, we can see that the proposed DuGa-DIT model also achieves
better performance on WK31-60K compared to most existing baselines. In particular, compared to
the baseline CAECGAT model, our DuGa-DIT model obtains an improvement of 6.45% on H@1
for WK31-60KFR−EN dataset and an improvement of 2.26% on H@1 for WK31-60KDE−EN . The im-
provements of our DuGa-DIT over the best reported model CAECGAT are statistically significant
(p < 0.5 using the t-test). These experimental results reconfirm that our DuGa-DIT model is effec-
tive and robust for the entity alignment task. In addition, compared to the random initialization,
we also find that using the pre-trained entity embedding can further improve the performance
on WK31-60K. In the rest of this article, we mainly report the results of our DuGa-DIT using the
pre-trained entity embedding.

4.5 Efficiency Analysis

To evaluate the efficiency of our model, we compare the performance and prediction time with
some representative baseline models on both datasets, DBP15KFR−EN and WK31-60KFR−EN . The
results are illustrated in Table 7. It is noted that difference parameter settings and the running
environment might influence the time costs. However, we aim to try the best to provide a gen-
eral picture of some representative methods by adopting the settings reported in their original
works. From Table 7, we can see that GM-EHD-JEA is more time consuming than other models on
DBP15KFR−EN . The reason lies in that GM-EHD-JEA depends on a joint entity alignment method
for prediction, which is time consuming. On the contrary, our GuGa-DIT is much more efficient
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Table 7. Performance and Prediction Time (in Seconds) for

Different Models on DBP15KFR−EN and WK31-60KFR−EN

Methods
DBP15KFR−EN WK31-60KFR−EN
Time H@1 Time H@1

GM-EHD-JEA 1,474 92.43 – –
RDGCN 45 88.64 366 77.91
HGCN-JE 50 89.16 392 76.59
NMN 84 90.20 407 77.63

CAECGAT 42 94.68 382 78.24
DuGa-DIT 44 98.17 385 84.69

Table 8. Ablation Study

Methods DBP15KZH−EN DBP15KJA−EN DBP15KFR−EN
H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR

BASELINE 56.09 71.55 0.614 67.10 78.25 0.712 85.48 91.92 0.878
DuGa 69.17 89.96 0.765 81.29 94.58 0.861 94.42 98.96 0.961

DuGa w/o C 63.86 91.92 0.709 72.35 94.64 0.815 86.24 98.70 0.895
DuGa w/o I 57.98 76.62 0.644 76.78 86.39 0.812 91.29 96.30 0.935

DuGa-DITiter=1 78.48 89.54 0.822 89.34 95.14 0.913 97.61 99.21 0.982
DuGa-DITiter=2 80.73 88.17 0.832 91.44 95.21 0.928 98.17 99.22 0.985

than GM-EHD-JEA. As shown in Table 7, GM-EHD-JEA spends 1,474 seconds,6 whereas our DuGa-
DIT model only needs 44 seconds on DBP15KFR−EN . And compared to our preliminary study of
the CAECGAT model and other baseline models, the proposed DuGa-DIT not only achieves com-
parative efficiency but also obtains better performance. On the large dataset WK31-60KFR−EN , the
time costs of all the models increase dramatically due to the larger number of parameters and
testing samples. Our DuGa-DIT model still achieves good efficiency and performance on WK31-
60KFR−EN . This experimental results show the superiority of our DuGa-DIT model.

4.6 Ablation Study

The proposed DuGa-DITmodel consists of some import modules, including the intra-KG attention
layer, cross-KG attention layer, and dynamic iterative training process. To investigate the impact
of different components, we conduct some ablation studies by removing some modules in our
DuGa-DIT model. As shown in Table 8, “BASELINE” is a simple model that finds the equivalent
counterparts using the sum of word vectors within the surface names of entities as embeddings.
DuGa is the DuGa-DIT model without using the dynamic iterative training method, “DuGa w/o
C” is the DuGa model without using the cross-KG attention layer, “DuGa w/o I” is the DuGa
model without using the intra-KG attention layer, and “DuGa-DITiter=1” and “DuGa-DITiter=2”
denote the DuGa-DIT model with the dynamic iterative training process for one iteration and two
iterations, respectively.
As we can observe in Table 8, the BASELINE model achieves good performance by consider-

ing surface names, which has also been proved in some existing works [88, 89]. The DuGa model
without using the iterative method obtains great performance gains compared with the BASE-
LINE, which indicates that the intra-KG and cross-KG attention mechanism play important roles

6The results are reported in their original work. Since GM-EHD-JEA does not release the code, we do not report the results
on WK31-60KFR−EN .
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in our model. By further removing the cross-KG attention, we can see that the performance of
“DuGa w/o C” is inferior to the DuGa model, which demonstrates the importance of the cross-KG
attention layer. Removing the intra-KG attention layer also can hurt the performance (“DuGa w/o
I” vs. DuGa). When we apply the dynamic iterative training process, the model DuGa-DITiter=1
achieves large performance gains compared to DuGa. And with more iterations, the performance
can be further improved (DuGa-DITiter=2 vs. DuGa-DITiter=1). These experimental results in the
ablation study clearly show that all the modules in our DuGa-DIT model make contributions to
the performance.

4.7 Impact of the Number of Layers

In this section, we conduct experiments to investigate how the number of dual KG attention layers
impacts the performance in our model. This experiment is conducted based on the DuGa model
without using dynamic iterative training process. Figure 3 illustrates the results of the DuGa mod-
els with different layer numbers from L = 1 to L = 3. We can see that the DuGa model with
two layers (e.g., L = 2) performs better than the models with one layer (e.g., L = 1) on all of these
three datasets. This indicates that addingmore layers can improve the performance by propagating
multi-hop neighborhood and cross-KG alignment features. However, the DuGa model with three
layers (e.g., L = 3) cannot further improve the performance, which indicates that farther neighbors
cannot further provide more useful information for the entity alignment task. And stacking too
many layers will increase the parameters in the model, which will hurt the efficiency of the model.
Therefore, we set the number of dual KG attention layers to 2.

4.8 Impact of Different Proportions of Seed Alignments for Training

To understand the impact of different proportions of seed alignments on our proposed DuGa-DIT
model, we further conduct studies to investigate and evaluate the performance by selecting the
proportions of training at 10%, 20%, 30%, 40%, and 50%. Respectively, the testing sets would be the
remaining entity alignments of 90%, 80%, 70%, 60%, and 50%. Figure 4 shows the comparison re-
sults between our proposed model, DuGa-DIT, and the strong baseline model of DuGa. In contrast
to our Duga-DIT, the baseline DuGa eliminates the aggregation layer of the cross-lingual KG in
the DuGa-DIT model. As shown in the diagram, the model performances for all datasets follow a
gradually uprising trend as the number of seed alignments increases. As DuGa-DIT uses an iter-
ative approach to dynamically add new seed alignments, the performance and robustness of the
proposed model is better, and the trendy lines indicated in blue color are smoother. This indicates
that our DuGa-DIT model is robust to obtain good performance with limited seed alignments.

4.9 Results for Entities with Different Degrees

For GNN-based models, the degree of entities is an important factor that may impact the perfor-
mance. In our DuGa-DIT model, we use the intra-KG attention layer to aggregate neighborhood
features. The richness of neighborhood features is related to the degree of entities. Figure 5 illus-
trates the Hits@1 and MRR results on DBP15K and WK31-60K for entities with different degrees,
aiming to better analyze the impact of degree. For DBP15KZH−EN and DBP15KJA−EN , both the
H@1 and MRR results gradually improve as the degrees of entities increase. For DBP15KFR−EN ,
the performance grows rapidly when the degree increases to 10, and then the performance is stable
at the level of 0.96 to 0.98. Intuitively, the entities with large degrees will have more neighbors and
obtain richer neighborhood features by applying intra-KG attention layer. These neighborhood
features are beneficial to the entity alignment task. For the DBP15KFR−EN , the entity alignment
is easy due to the similar surface forms of entities between English and French. Therefore, the
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Fig. 3. The results on DBP15K and WK31-60K with different numbers of layers.

Fig. 4. Performance on DBP15K using different proportions of seed alignments.

performance for DBP15KFR−EN can be improved to a high level with a few degrees. For the WK31-
60K dataset, we can observe a similar tendency.

4.10 Impact of the Number of Negative Samples

To train our models, we need to sample some negative entity pairs to compute the objective func-
tion. Therefore, the number of negative samples is an important hyper-parameter. We further
compare the results on DBP15K with different sizes of negative samples to explore the impact of
the number of negative samples. As shown in Table 9, we conduct a series of experiments with
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Fig. 5. The results on DBP15K and WK31-60K for entities with different degrees.

Table 9. Results on DBP15K with Different Numbers of Negative Samples

DBP15KZH−EN DBP15KJA−EN DBP15KFR−EN
Negative Samples H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR

10 68.67 88.92 0.762 80.76 94.67 0.858 93.44 98.95 0.957
20 68.85 89.90 0.763 80.74 94.40 0.857 93.93 98.87 0.957
30 69.17 89.96 0.765 81.29 94.58 0.861 94.42 98.96 0.961

40 68.76 89.85 0.763 81.41 94.64 0.862 94.16 98.09 0.959
50 68.72 89.68 0.761 81.58 94.57 0.863 94.29 99.07 0.960

different numbers of negative samples, ranging from 10 to 50, and apply them to the proposed
DuGa model. We can see that as the number of negative samples increases, the performance can
be slightly improved. However, the degree of improvement is limited. Specifically, when the num-
ber of negative samples is set to 30, the model can reach good performance. Therefore, for the
purpose of balancing both the effectiveness and efficiency, we select the number of negative sam-
ples as 30 in our study.

4.11 Case Study in Personalized Search

Personalized search aims to return relevant user-specific answers for a query submitted by a user.
However, most of the personalized search methods focus on monolingual datasets, and very few
works have been done to deal with cross-lingual personalized search. In this study, we investi-
gate how to apply the entity alignment model to cross-lingual personalized search. To the best of
our knowledge, no dataset for cross-lingual personalized search is available from previous studies,
which makes it difficult to do research on cross-lingual personalized search. Inspired by Zhou et al.
[97], we collect a cross-lingual personalized search dataset from DBpedia [31]. Specifically, we ex-
tract two cross-lingual sub-graphs about songs and artists from English DBpedia and Japanese DB-
pedia. And we use this dataset to simulate personalized music search, where an artist is viewed as
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Table 10. Result on Cross-Lingual

Personalized Search

Method H@1 MRR
BASELINE 21.16 0.409
RDGCN 48.52 0.638
HGCN-JE 44.38 0.608
NMN 38.34 0.556
CAECGAT 58.92 0.757
DuGa 58.70 0.726
DuGa-DIT 64.04 0.761

a query, a genre of the songs is viewed as a user, and songs are viewed as documents to return. This
is possible, because genres can represent different points of user interest. When a user searches the
songs of a given artist, we should return the songs with a genre in which the user is most interested.
The cross-lingual personalized search dataset is created by considering the query and document
from different KGs (e.g., the query fromEnglish KG and the document from Japanese KG). Formally,
let G1 and G2 denote the KGs with two different languages. Let (query1,user ,document1) denote
the query and document for a user fromG1, and let (query2,user ,document2) denote its equivalent
query and document for the user fromG2. We call the query and document for a user from a mono-
lingual KG amonolingual query triple. Then, we can construct a cross-lingual query and document
for the user, which is called a cross-lingual query triple and denoted as (query1,user ,document2).
Finally, the cross-lingual personalized search dataset consists of 1,068 monolingual query triples
and 1,068 cross-lingual query triples from English to Japanese KG. And we randomly sample 10
negative documents for each of the query triples. To evaluate our entity alignment model, we use
the monolingual query triples for training and cross-lingual query triples for testing.
We first use the proposed DuGa-DIT model to learn entity embeddings for entities from two

KGs with 30% seed alignments available. Then, the entity embeddings are used as input features
for the cross-lingual personalized search. Formally, the feature representations of query1, user ,
document1, and document2 are denoted as e1,q , eu , e1,d , and e2,d , respectively. Then, we compute
the score for a query triples as follows:

f (query1,user ,document2) = θ (Wq (e1,q + eu − e2,d )2 + bq ), (12)

whereWq and bq are the trainable parameters.
We use the embeddings produced by DuGa-DIT as input features and train the scoring model on

monolingual query triples and evaluate themodel by ranking the cross-lingual query triples accord-
ing to the scores. Table 10 shows the results on cross-lingual personalized search. The “BASELINE”
translates the surface names of entities into the same language and use the sum of word vectors of
the surface name as the entity’s embedding. We also compare with the state-of-the-art models that
also use the pre-trained word vector as the initial entity embedding, including RDGCN, HGCN-JE,
NMN, and CAECGAT.
As illustrated in Table 10, the DuGa model performs better than most of the baseline models

in the task of cross-lingual personalized search, which shows that our DuGa model is effective to
model cross-lingual entities. Furthermore, by applying the dynamic iterative training process, our
DuGa-DIT further improves the performance on the cross-lingual personalized search. The results
reconfirm the effectiveness of the proposed DuGa-DIT model and demonstrate that our DuGa-DIT
model is able to apply to cross-lingual personalized search.
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Table 11. Cross-Lingual Personalized Search Examples of the Predicted Results

of Our DuGa-DIT Versus the Strong Baseline RDGCN Model

Query and User Candidates
Rank

DuGa-DIT RDGCN

(Lennon McCartney, Art_rock, ?)
� �� �� � ��� (A Day in the Life) 1st 6th
� 	
� (Stan Bush) 2nd 9th
�� ��� �� �� �� (I Want to Tell You) 3rd 1st

(The Beatles, Folk_music, ?)
�� ������� (Her Majesty) 1st 5th
���� (What Goes On) 2nd 7th
��� ��� ��� (Long, Long, Long) 3rd 2nd

(Joe Strummer, New_wave, ?)
������ (Spanish Bombs) 1st 4th
�
�� � �� (Rocky Raccoon) 2nd 8th
!"� 	�# �
� $�� (Any Time at All) 3rd 5th

Underline indicates the true document.

Table 11 shows some examples of the cross-lingual personalized search. We compare the rank
of our DuGa-DIT model with the strong baseline RDGCN model. As illustrated in Table 11,
the baseline model RDGCN fails to rank these candidate documents, whereas our DuGa-DIT
model is able to correctly rank the true document at the first rank. For example, with the query
Lennon McCartney and the user Art_rock, we can rank the song� �� �� � ���
(A Day in the Life), which is a song with a genre of art rock, as the first position. These examples
verify the effectiveness of our DuGa-DIT model to apply to cross-lingual personalized search.

5 CONCLUSION AND FUTURE WORK

In this article, we propose a DuGa-DIT network with dynamic iterative training for the cross-
lingual KG entity alignment task, which takes full use of seed alignments to alleviate the semantic
gap between different KGs. In the DuGa-DIT model, we use a intra-KG attention layer to aggre-
gate local neighborhood features and a cross-KG attention layer to gather cross-KG alignment
information, and these two kinds of features are merged to update the embedding of two KGs.
A dynamic iterative training process is used to dynamically update the cross-KG attention score
matrices, which enable our model to capture more cross-KG information. Experimental results on
two benchmark datasets show that our model is effective and robust for the cross-lingual entity
alignment task. And a case study on cross-lingual personalized search task demonstrates that our
DuGa-DIT model achieves promising results for cross-lingual personalized search.
Even though the DuGa-DIT model performs well on the given datasets, some future work still

needs to be done to bring this stream of research further. Details of proposed future directions are
presented as follows:

• The proposed method in this article simply exercises alignment between two KGs. The pur-
pose is for us to build more effective, efficient, and robust models on top of the foundation.
In the future, it would be helpful to learn the auto alignment task considering more entity
information, such as entity properties and descriptions, among three or more KGs.
• How to design a distributed auto alignment method would become an important direction
for future research. In real-life scenarios, the size of KGs is usually very large, especially for
tasks in personalized search and recommendation. Furthermore, the structural differences
of the KGs can be even bigger.
• In addition to applying our model to the KG entity alignment task to English, Chinese,
French, and Japanese, we plan to apply this to more resourceful and other specific domains,
which include but are not limited to English to Malay and English to Portuguese.
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