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a b s t r a c t

Software reuse is a popular way to utilize existing software components to ensure the quality of
newly developed software in service-oriented architecture. However, how to find a suitable web
service from existing repositories to meet requirements is still an open issue. Among others, web
service classification is one of the most essential and effective means for web service recommendation.
Previous studies have concerned this problem, but a critical issue, i.e., the semantic and syntactic
information for the web service, is often ignored. To address such an issue, in this work, we propose
Graph4Web, which uses a relation-aware graph attention network for web service classification.
Specifically, we first parse the web service description sequence into the dependency graph and
initialize the embedding vector of each node in the graph by tuning the pre-trained BERT model.
We further propose a relation-aware graph attention layer to learn and update the node embedding
vector by aggregating the information of neighborhood nodes and the distinct types of relationships
between nodes. In addition, we introduce the self-attention mechanism to acquire the high-level global
representation for web service classification. Various experiments demonstrate that Graph4Web has
better classification performance compared with seven baseline methods with three indicators.

© 2022 Elsevier Inc. All rights reserved.
1. Introduction

Software, as an Internet product or service, has brought un-
recedented influence on all aspects of people’s daily life. How-
ver, as the number, scale, and complexity of software increases,
ow to ensure the quality of newly developed software is critical
o software development (Buckley and Poston, 1984; Zhang et al.,
016; Yu et al., 2019). Software reuse, as a means to develop
ew software products with similar functions by virtue of existing
oftware components, has become a popular way during the
oftware development process (Barros-Justo et al., 2018; Imoize
t al., 2019).
As the service-oriented architecture became popular, web

ervices turned into an indispensable part in modern software
evelopment. Web services provide a basic composition with
igh cohesion and loose coupling to support responses among
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164-1212/© 2022 Elsevier Inc. All rights reserved.
heterogeneous software components (Wang et al., 2020b; Yang
et al., 2020, 2018b), which have the possibility to lessen the
development cost and promote the robustness of the software.
Web services are also treated as valuable resources for software
reuse (Yang et al., 2018a). The popular web service repositories,
such as ProgrammableWeb1 and Public APIs,2 contain a mass
of web services for beginners and developers to choose from.
Nevertheless, the large number of web services also makes it
difficult to select the suitable services. Thus, the key to reuse
software components lies in how to find the appropriate web
services from repositories to meet the requirements of developers
in specific application scenarios, which is a hot research topic in
service discovery (Elshater et al., 2015; Hajlaoui et al., 2017).

As an effective way, web services classification has shown the
powerful ability for the service discovery task (Elgazzar et al.,
2010). The aim of web service classification task is to determine
which category one web service belongs to. When issuing a

1 http://www.programmableweb.com.
2 https://github.com/public-apis/public-apis.
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ew web service on the repository, such as ProgrammableWeb,
evelopers need to provide the description document explaining
he functionality and select a category to which this web service
elongs because of the platform specification. However, there
re more than 500 categories in ProgrammableWeb site, which
akes it difficult for developers to select. In addition, the well-
ategorized web services make the service discovery and service
omposition easier and it will improve the software reuse process
ecause more suitable and high-quality software components
i.e., web services) will be found by developers (Atkinson et al.,
007; Wang et al., 2017; Yang et al., 2020).
Previous studies (Elshater et al., 2015; Hao et al., 2010; Liu

nd Wong, 2009) proposed to use traditional machine learning
echniques for this purpose. With the rise of neural networks,
eep learning techniques with strong abilities for representation
earning has been widely applied by researchers to a variety of
omain-specific tasks, such as natural language processing (Xie
t al., 2020a,b) and software engineering (Wang et al., 2021c; Xu
t al., 2021). Recently, Yang et al. (2020) proposed ServeNet-BERT
hat adopted the integration of Bi-directional Long Short-Term
emory (Bi-LSTM) and Convolutional Neural Network (CNN)

to learn the high-level feature representation from the descrip-
tion and name information of web services and then combined
them into unified representation for web service classification.
The performance of their model was further enhanced by the
Bidirectional Encoder Representation from Transformers (BERT)
model (Devlin et al., 2018). As web service documents are the
unstructured textual sequences, modeling them directly cannot
well reveal the implicit dependent relationship between words.
As previous studies suggested (Guo et al., 2019; Tian et al., 2021;
Vashishth et al., 2018; Yao et al., 2019), one way mining such
implicit information is to parse the web service document into
structural representation, such as the graph. Inspired by these
studies, we seek to make the web service document structured. In
addition, we also want to further learn the semantic and syntactic
information hidden in this structural representation.

Recently, Graph Neural Networks (GNN) with the powerful
ability to learn feature representation from structured data has
been applied to text-based representation learning and classifi-
cation tasks (Huang et al., 2019; Wang et al., 2020c; Yao et al.,
2019; Wang et al., 2021a,b; Yu et al., 2022). Some studies (Dozat
and Manning, 2016; Wang et al., 2020c) parsed the text se-
quence into the dependency graph and then used the GNN model
to update the feature representation. Following them, in this
work, we propose the Graph4Web model that uses a relation-
aware graph attention network for web service classification. This
model adopts a GNN-based architecture because of its potential
to learn and express implicit information hidden in structured
data (Huang et al., 2019; Wang et al., 2020c). Specifically, we first
employ the Biaffine Parser (Dozat and Manning, 2016) to encode
the web service description sequence into the dependency graph
that holds the abundant semantic and syntactic information. We
further propose a Relation-Aware Graph Attention (RAGA) layer
to update the node representation in the dependency graph. Our
RAGA layer simultaneously aggregates the neighbors informa-
tion and the different types of relationship information between
neighborhood nodes to learn and update the node representa-
tions. Then, we produce the global representation for the depen-
dency graph by the virtue of the self-attention mechanism for
web service classification.

We evaluate our proposed Graph4Web model on the real-
world web service dataset collected from the ProgrammbleWeb
site with three performance indicators. Our experimental results
demonstrate that Graph4Web achieves average Precision, Recall,
and F-measure values of 0.702, 0.690, and 0.693, respectively.
Compared with the seven representative methods, Graph4Web
obtains average improvements by 39.1%, 49.2%, and 50.3% in
terms of the three indicators, respectively.
2

We summarize the main contributions of this paper as follows:

• To the best of our knowledge, this is the first work which
builds the dependency graph and introduces the relation-
aware graph attention network for web service classifica-
tion.

• We propose a RAGA layer that considers the neighbors’
information and the different types of relationship informa-
tion between neighborhood nodes simultaneously to update
the node representations.

• We conduct comprehensive experiments on real-world web
services and evaluate our model with three performance
indicators. The results show the superiority of our proposed
model compared with seven representative methods.

The rest of this paper is organized as follows. Section 2 pro-
vides a motivating example. Section 3 introduces the related
work. The proposed Graph4Web model is described in Section 4.
Section 5 and Section 6 detail the experimental setup and results,
respectively. Section 7 further discusses our proposed method.
Section 8 discusses the threats to validity of our work. Finally,
we conclude our work in Section 9.

2. Motivating example

Tom is a senior programmer whose daily work is to develop
new software components or libraries to meet requirements pro-
posed by users and other developers. One day, his project man-
ager requests him to develop a new software component, i.e., the
web service, and make it issue on public service repositories, such
as the ProgrammableWeb. After coding finished, he describes the
functionality of this web service in detail because of the devel-
opment specification, i.e., the web service description document.
When issuing, the platform requires the publisher select a specific
category to which the web service belongs, aiming at making the
management and discovery process easier for others. However,
there are more than 500 categories can be chosen, which brings
the trouble of time consumption and precision to developers
because well-organized web services facilitate the web service
discovery and composition (Elgazzar et al., 2010; Yang et al., 2019,
2020). With the help of our Graph4Web model, Tom can easily
determine which category this newly developed web service be-
longs to by adopting the information at hand, i.e., the web service
description document.

3. Related work

As our aim is to determine which category one web service
belongs to, we first introduce some existing studies for web
service classification and recommendation tasks. Liu and Wong
(2009) proposed an approach that extracted four functionality
characteristics from the web service description language (WSDL)
by adopting textual mining techniques for web service cluster-
ing. Liu and Fulia (2015) introduced the probabilistic matrix to
obtain the use-related and service-related features from WSDL
and employed the probabilistic topic model to acquire topic-
related features. Then, these latent features are used for web
service recommendation. Aznag et al. (2014) incorporated the
correlated topic model and formal concept analysis technique to
mine features from WSDL and cluster the web services. Katakis
et al. (2009) proposed to use both the textual description and
semantic annotations of service-based web ontology language
for feature representation and employ the classifier ensemble
for web service classification automatically. Wang et al. (2010)
used the functional features of web services and employed the
support vector machine (SVM) algorithm for classifying web ser-
vices. Fang et al. (2012) proposed an automatic method that
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ntroduced the clustering techniques to tag web services by us-
ng the web services description language documents. Kapitsaki
2014) extracted the features for web services by using the Term
requency–Inverse Document Frequency (TF–IDF) technique and
dopted seven classifiers for web service segments classification.
isa and Qamar (2015) first extracted features by parsing web
ervices description language documents and took the maximum
ntropy as the criterion for web service classification. Elshater
t al. (2015) developed the goDiscovery model that utilized the
tatistical model (i.e., TF–IDF) and the indexing technique (i.e., K-
imensional tree index) for web service discovery. Liu et al.
2016a) proposed an active learning method, called LDA-SVM,
hich introduced the Latent Dirichlet Allocation algorithm and
tilized the SVM for web service classification. Liu et al. (2016b)
dentified the web services using the ontology concept and intro-
uced the Naive Bayes theory for web service classification. Shi
t al. (2017) incorporated the active learning with the correlation-
ware learning strategy for web service tag recommendation
ask.

Ye et al. (2019) proposed the Wide&Bi-LSTM model that used
he wide learning model to combine all the discrete features in
he web service descriptions for breadth learning and employed
he Bi-LSTM model for depth learning. The results from the two
spects are integrated for web service classification. Cao et al.
2019) proposed the LAB-BiLSTM method that combined the lo-
al feature representation produced by Bi-LSTM model with the
lobal topic representation via the attention mechanism for web
ervice classification. Yang et al. (2019) proposed the ServeNet
hat used the Bi-LSTM model to encode the service descrip-
ions and adopted the CNN model for obtaining the representa-
ion for web service classification. Moreover, Yang et al. (2020)
mproved ServeNet and proposed ServeNet-BERT that applied
he BERT model to produce the embedding vectors and this
odel obtained the state-of-the-art performance for web service
lassification.
Traditional studies for web service discovery and classification

lways extracted related features based on feature engineering
echniques which highly relies on expert efforts and the qual-
ty of features severely impact the classification performance.
n addition, some studies directly treated the web service de-
cription as the textual sequence which to some extend lost
he inherent dependent relationships between words. Different
rom the above studies, we parse the web service description
nto the structural dependency graph that reserves the implicit
elation information. We further use the relation-aware graph
ttention network to update the node embedding vectors in the
raph.
As the basic architecture of our model is the GNN, we also

resent the work related to it. Kipf and Welling (2016) was the
irst to develop a graph structure based semi-supervised learning
odel Graph Convolutional Network (GCN). This model encoded

he graph structure and node information leveraging the first-
rder approximation of spectral graph convolutions. GCN resorted
he eigendecomposition of the Laplacian matrix to realize the
raph convolution operation. However, it is difficult to decom-
osite eigen of the Laplacian matrix when faced with large-scale
raphs. To solve this problem, Veličković et al. (2017) proposed
he GAT network that leveraged the masked self-attention mech-
nism and the neighborhood nodes to update the node features.
usbridge et al. (2019) further improved the GAT and developed
he RGAT model aggregating the relational information between
odes.
Different from the above studies, we apply the graph learning

o the web service classification and develop the Graph4Web
odel considering both the neighborhood nodes’ information

nd their relationship information simultaneously. Our model

3

reserves both the syntactic and the semantic information in the
web service description.

4. Proposed method

4.1. Overall framework

Fig. 1 elaborates an overview of our proposed relation-aware
graph attention network. As our model adopts the graph neural
network to update the feature embedding for each node, we start
from parsing the description sequence into a dependency graph.
Note that words in the description sequence are represented
by nodes in the built graph. Each node embedding is initialized
by the BERT model. To learn the high-quality node represen-
tation, we propose a RAGA layer that takes into account both
the neighborhood information of the node and their relationship
information simultaneously. After stacking multiple RAGA layers,
our model is able to incorporate multi-hop neighborhood infor-
mation for each node. To obtain the global representation, we
introduce the self-attention mechanism that integrates all the
node embedding into a high-level graph representation. Finally,
the softmax function is used to determine which category the
web service belongs to.

4.2. Dependency graph parsing

As shown in Fig. 2, a web service description sequence3 pro-
vides its functional details. As the natural language description of
web service inherently contains the dependence relationship be-
tween words, to start with, we pursue a parsing technique to find
these dependence relationships that hold the semantic and syn-
tactic information from the description. One way to cater to this
idea is by means of the graph structure. The Biaffine Parser (Dozat
and Manning, 2016) is a biaffine based neural dependency parsing
technique, which uses the Bi-LSTM with a biaffine attention to
substitute the traditional bi-linear attention mechanism. Then, it
applied a biaffine dependency label classification model to decide
the dependent head of each word. This parsing technique has
the potential to model the prior probability of each word under
any dependent relationships and the probability that satisfies a
specific dependent relationship directly.

Take the sentence ‘‘Junction Networks offers a variety of business
VoIP services’’ as an example, we apply the Biaffine Parser to ob-
tain the dependence relationship among all words, and the pars-
ing result is depicted in Fig. 3. The red oval means the root node of
this sentence after parsing. The syntactic dependencies DEP, PREP,
POBJ, and AMOD refer to the dependent, prepositional modifier,
prepositional object, and adjective modifier, respectively.

A web service can be formalized as s = {Name,Des, c} where
Name, Des, and c denote the name, description sequence, and
category, respectively. For the description sequence, we use the
Biaffine Parser to parse it into a graph-based dependency. Based
on the parsing results, we can construct the dependent relation-
ship graph G = {V , E} where V and E represent the corresponding
node set and edge set, respectively. In our work, we take the
words as the nodes in the graph and the edges as the dependent
relationship between words. Note that, we only employ the Bi-
affine Parser on the descriptions because there exist the inherent
relations in these description contexts. Instead, the service name
just provides a high-level symbol that refers to this service but
the dependency is scarce. We will analyze the impact of the
service name in Section 6.3.

3 http://www.programmableweb.com/api/junction-networks-web-services.

http://www.programmableweb.com/api/junction-networks-web-services
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Fig. 1. Overall framework of our model.
Fig. 2. An example of web service.

.3. BERT embedding

As mentioned above, the web service contains the description
onsisting of the word sequence. To obtain the feature embed-
ings for the words, we employ the BERT model that has achieved
romising performance in many text-based tasks (Devlin et al.,
018; Tang et al., 2020; Wang et al., 2020c; Yang et al., 2020).
ERT is a deep auto-encoder model that excavates the semantic
nformation in the word sequence by pre-training two tasks: the
asked language model and next sentence prediction. It first

andomly masks 15% of words in the input sequence and then re-
tores these words by means of the deep Transformers (Vaswani
t al., 2017). To catering the input format of BERT, two special
igns [CLS] and [SEP] are added at the beginning and end of
he sentence individually, in which [CLS] possesses the semantic
nformation among the whole input sentence and [SEP] refers
o the separator. After training, the BERT model can output the
emantic representation of each word in the sentence, which is
onsistent with the order of the input sentence.
In this work, we first tokenize the service description sequence

nd utilize the BERT model to embed it to obtain the initial em-
edding for each word. More specifically, for a service description
equence Des = {w1, w2, . . . , wn} where n denotes the sequence
ength, we fine-tune the pre-trained BERT model to obtain the
nitial word embeddings, which are formulized as:

= BERT(Des) (1)

where E = {ei, e2, . . . , en} denotes the embedding vector and
ei corresponds to the word wi. ei ∈ RNemb and Nemb is the
imensionality of the embedding vector.
4

4.4. Relation-aware graph attention layer

After parsing the service description sequence by analyzing
its grammatical information, we can obtain its graph structure
representation that contains the dependent relationship between
words. To further encode the graph node information, we propose
the RAGA layer that incorporates both the neighbor informa-
tion of each node and the relationship information between two
adjacent nodes.

Graph Attention Network. As the neighbors’ information con-
tains the dependent relationship between nodes, we employ the
Graph Attention network (GAT) (Veličković et al., 2017) to inte-
grate the neighborhood information into the node. Concretely,
for the node set V = {v1, v2, . . . , vn} in a dependency graph G,
we first initialize its node feature embedding following Eq. (1).
Assume Ni refers to the neighbor nodes of ith node in the graph,
we use the following formula to update the node embedding by
absorbing its neighbors information:

hnb
i =

∑
k∈Ni

αikWhk (2)

where hnb
i represents the embedding after updating by the GAT

layer, hk represents the kth neighborhood node, and W ∈

RN ′
emb×Nemb is a shared weight matrix that can be learned during

the training (Veličković et al., 2017). αik means the normal-
ized attention weight for the kth neighborhood node, which is
formulized as:

αik =
exp(scorenbik )∑

k′∈Ni
exp(scorenbik′ )

(3)

where exp(·) means the exponential function. scorenb is a scoring
function that determines how important one node is to another,
which can be computed by the following formula:

scorenbik = LeakyRelu(W′
[ei ∥ ek]) (4)

where LeakyRelu (Maas et al., 2013) is an activation function,
W’ is a learnable vector, and ∥ represents the concatenation
operation between two embedding vectors.

The RAGA Layer. The GAT network updates the node embed-
ding by incorporating its neighborhood node information, which
ignores the relation information between nodes, i.e., the depen-
dency produced during the description parsing phase. Intuitively,
the neighbor nodes with different dependent relationships have
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Fig. 3. An example of the parsing result by the Biaffine Parser.
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istinct impacts on the node representation. To this end, we
ollow the previous study (Wang et al., 2020c) by taking into
ccount the relation information during the update procedure
f the node embedding. More specifically, we first initialize the
mbedding vector for the relation between nodes ei and ek by the
ollowing formula:

elik = femb(ei, ek) (5)

here relik ∈ Rremb represents the relation embedding vector
nd remb is the dimensionality of the relation embedding vector.
emb is a learnable function that is initialized with the uniform
istribution and updated during the training process. Then, we
ompute the node embedding by the following formula:
rel
i =

∑
k∈Ni

βikhk (6)

here hrel
i represents the embedding by considering the relation

nformation. βik denotes the relation-aware attention weight for
he kth neighborhood node, which is formulized as:

ik =
exp(scorerelik )∑

k′∈Ni
exp(scorerelik′ )

(7)

where scorerel is a scoring function that decides the importance
of each relationship, which is defined as the following formula:

scorerelik = Relu(W1relik + b1)W2 + b2 (8)

where Relu is an activation function. W1, b1, W2, and b2 are the
learnable parameters during the training process.

After obtaining the embedding vectors hnb
i and hrel

i , we can
obtain the final node embedding hfinal

i by introducing the neighbor
information and relation information simultaneously, which is
formulized as:

hfinal
i = hnb

i + hrel
i (9)

The above update operation only takes the first-order neigh-
bors into consideration. By stacking multiple RAGA layers, we
can aggregate the multi-hop neighborhood information and the
corresponding relation information.

4.5. Graph level representation

After the above treatment, we obtain the embedding vector
at the node level. To produce the global representation of the
graph, we introduce the self-attention mechanism (Vaswani et al.,
2017; Shaw et al., 2018). Concretely, for the description sequence
embedding after updating by our RAGA layers, we can obtain the
final embedding vectors {hfinal

1 , hfinal
2 , . . . , hfinal

n } that correspond to
the node set {v1, v2, . . . , vn}. Then, we use the following oper-

ation to fuse all the node embeddings into a high-level global

5

representation that inside contains the whole information of the
graph G, which is denoted as:

H =

n∑
i=1

γih
final
i (10)

where γi is a scoring function that is calculated as follows:

γi =
exp(MLP(hfinal

i ))∑n
j=1 exp(MLP(hfinal

j ))
(11)

here MLP is the multi-layer perceptron.

.6. Model training and classification

The training process is designed in an end-to-end manner to
chieve high efficiency. Once obtained the final global represen-
ation vector that refers to the web service, we can acquire the
robability distribution of every category using a softmax layer.
hen, we treat the one that has the maximum probability value
s the most probable category for this web service. We use the
egative log likelihood loss function to optimize our model, which
s defined as:

(θ ) = −

m∑
i=1

log(P(ci|ĉi, θ )) (12)

here m is the total number of web service instances, ci and ĉi
epresent the true category and predicted category, respectively.
is the parameter to be optimized.
After the model training is finished, we take the new web

ervice instance tokenized by the BERT model as input, update
he embedding, and learn the global representation. Finally, we
utput the category to which this web service belongs.

. Experimental setup

.1. Dataset

To evaluate the performance of our proposed model, we con-
uct experiments on a dataset collected from the
rogrammableWeb site which consists of 15,344 web services of
01 categories. Each web service contains the name, category,
nd description (as shown in Fig. 2). Following the previous
tudy (Yang et al., 2020), the services with the empty name,
escription or category are removed. In addition, to make the
ataset more balanced, after counting the scale of each category,
ome of them including one-shot, few-shot, and small-scale cat-
gories are discarded and the big-scale categories are retained
s the previous study did (Yang et al., 2020). As a result, 10,943
eb services from top 50 categories are reserved to form the final
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Fig. 4. The statistic information of each category.
ataset for our experiments. Fig. 4 gives the statistic information
f each category. We randomly select 80% of the web services as
he training set and the remainder as the test set following the
ame setting in recent studies (Yang et al., 2019, 2020).

.2. Performance indicators

As our goal is to determine which category one web service
elongs to, it can be treated as a multi-classification task. In this
ork, we employ three confusion matrix based indicators, includ-

ng Precision, Recall, and F-measure, to evaluate the performance
f our model, which are calculated as follows:

recision =
TP

TP + FP
(13)

ecall =
TP

TP + FN
(14)

-measure =
2 × Precision × Recall
Precision + Recall

(15)

here TP indicates the number of web services that are correctly
redicted as the category, FP indicates the number of services
ith other categories but are predicted as the category, and FN

ndicates the number of web services with the category but are
redicted as other categories.
All the used three indicators are range from 0 to 1. The

arger value indicates that the model achieves better classification
erformance. These indicators are commonly used in previous
tudies (Ferenc et al., 2020; Gu et al., 2019; Pascarella et al., 2019;
en et al., 2019; Tang et al., 2021; Wang et al., 2020a; Xu et al.,
019a,b; Zhao et al., 2021c,b,a).

.3. Parameter configuration

We use the BERT model to embed every node in the graph
y parsing the service description into a 768-dimensional em-
edding vector (Devlin et al., 2018), and the max length of each
escription sequence m is set as 128. We use two layers of our

proposed RAGA layer with the hidden dimension as 768 (Devlin
et al., 2018). We train the model 200 epochs with the batch size
as 32. To optimize the parameters, the AdamW algorithm (Devlin
et al., 2018) is applied with the learning rate as 1e−5.
6

5.4. Methods for comparison

Seven representative methods including two state-of-the-art
models (i.e., ServeNet and ServeNet-BERT) for web service clas-
sification and five mainstream models for text classification are
adopted for comparison.

• CNN (Wang et al., 2018): Convolutional Neural Network
(CNN) first proposed to extract the feature from the im-
age. For the text classification task, CNN assumes that each
word is related to its several neighborhood words. After
extracting the feature by the convolutional kernel, the pool-
ing operation is used to obtain the high-level sequence
representation.

• RCNN (Lai et al., 2015): Recurrent Convolutional Neural
Network (RCNN) integrates a recurrent structure and the
convolutional layer to gather the contextual representation
information and relieve the bias issue. Then, a max-pooling
operation is used to produce the feature representation at
the sequence level.

• LSTM (Johnson and Zhang, 2016): This method employs
the Long Short-Term Memory (LSTM) to learn the word
representation by incorporating the previous word repre-
sentations.

• Bi-LSTM (Zhang et al., 2015): This method proposed to use a
Bi-directional Long Short-TermMemory (Bi-LSTM) architec-
ture that gathers the long distance relationship started from
two directions, aiming at learning the high-level sentence
representation for the given sequence.

• C-LSTM (Zhou et al., 2015): This method combines the CNN
and LSTM into a new unified model that has the potential
to capture the local and global information simultaneously.

• ServeNet (Yang et al., 2019): This method comprises one
embedding layer, feature extraction layers, and task layers
for web service classification. The embedding layer uses the
Global Vectors for word representation (Glove) (Pennington
et al., 2014) to initialize the service description and then
the feature extraction layers combine the CNN and Bi-LSTM
models to learn the high-level feature representation. Fi-
nally, the task layers utilize a fully connected layer followed
by a softmax layer for classification.
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• ServeNet-BERT (Yang et al., 2020): This method takes the
service name and service description information into ac-
count for web service classification. For the service de-
scription, it first applies the BERT model to obtaining the
initialized feature embedding for each word and then uses
the CNN and Bi-LSTM models to learn the high-level repre-
sentation for the whole description. Also, the service name
is initialized and pooled by BERT to obtain the feature em-
bedding. Finally, the feature representations between de-
scription and name are concatenated, and a fully connected
layer followed by a softmax layer is employed for clas-
sification. ServeNet-BERT has obtained the state-of-the-art
performance on web service classification task.

In all the baseline models, the first five mainstream models,
ncluding CNN, RCNN, LSTM, Bi-LSMT, and C-LSTM, only take the
eb service description as inputs. Then, the feature representa-
ion can be leant by these models to determine the probability
f each category for web service classification task. In addition,
he two state-of-the-art models, i.e., ServeNet and ServeNet-BERT
ake both the service name and the service description sequence
nto account. Then, they incorporate the representations of the
ervice name and description to identify which category one web
ervice belongs to.

.5. Research questions

In this work, we empirically design the following three re-
earch questions (RQs) to measure our proposed model.
RQ1: Is our proposed Graph4Web model superior to the state-of-

he-art methods?
Motivation: Deep learning techniques have obtained satisfac-

ory performance in the classification task (Kowsari et al., 2017;
inaee et al., 2021). In particular, some previous studies (Yang
t al., 2019, 2020) proposed to apply the deep learning techniques
or web service classification task and obtained the state-of-the-
rt performance. This research question is designed to explore
hether our proposed Graph4Web model can perform better
ompared with the existing methods.
RQ2: How effective is our Graph4Web model compared with its

ariants?
Motivation: Our Graph4Web model first employs BERT to

nitialize the node embedding vector for the built dependency
raph and then adopts the RAGA layers that incorporates both
he neighborhood nodes information and the relationship infor-
ation between them to update the node representation. This
uestion is designed to investigate whether each part used in our
raph4Web model is effective to improve the performance of the
eb service classification task.
RQ3: Can service name improve the performance of our

raph4Web model?
Motivation: In this work, we only use the service description

nformation for model building, but the web services also contain
he service name that refers to it. This question is designed to
xplore whether aggregating the name information can further
mprove the classification performance.

. Experimental results

.1. RQ1: Is our proposed Graph4Web model superior to the state-
f-the-art methods?

Methods: To answer this question, we choose seven represen-
ative methods consisting of five commonly used deep learning
echniques and two state-of-the-art methods for web service
lassification (as shown in Section 5.4).
7

Table 1
The average results for Graph4Web and seven representative methods.
Method Precision Recall F-measure

CNN 0.287 0.237 0.238
RCNN 0.601 0.551 0.561
LSTM 0.486 0.446 0.441
Bi-LSTM 0.586 0.568 0.562
C-LSTM 0.556 0.550 0.536
ServeNet 0.611 0.578 0.581
ServeNet-BERT 0.677 0.658 0.662
Graph4Web 0.702 0.690 0.693

Fig. 5. The radar map for F-measure among all categories.

Results: Table 1 demonstrates the average results of our
Graph4Web model and the seven comparative methods in terms
of Precision, Recall, and F-measure, respectively. We can see
from this table that, in terms of Precision, the average value
by Graph4Web achieves improvements by 144.6%, 16.9%, 44.6%,
19.9%, 26.2%, 14.9%, and 3.7% compared with CNN, RCNN, LSTM,
Bi-LSTM, C-LSTM, ServeNet, and ServeNet-BERT, individually. Our
Graph4Web model obtains the best average Precision value of
0.702 and achieves an average improvement by 38.7%. In terms
of Recall, the average value by Graph4Web achieves improve-
ments by 191.8%, 25.2%, 54.8%, 21.5%, 25.5%, 19.4%, and 4.9%
compared with the seven representative methods, individually.
Our Graph4Web model obtains the best average Recall value of
0.690 and achieves an average improvement by 49.0%. In terms of
F-measure, the average value by Graph4Web achieves improve-
ments by 191.7%, 23.5%, 57.0%, 23.4%, 29.4%, 19.2%, and 4.7%
compared with the seven representative methods, individually.
Our Graph4Web model obtains the best average F-measure value
of 0.693 and achieves an average improvement by 49.8%.

To illustrate the results in a more intuitive way, we elaborate a
radar map that comprehensively analyzes our Graph4Web model
and seven representative methods among all categories via draw-
ing a closed polygonal for F-measure as shown in Fig. 5. From
this figure, we can find that, our proposed Graph4Web model (the
blue line) appears on the most outside of the radar map and forms
the largest closed area, which indicates that Graph4Web always
obtains the best performance on most of categories for the web
service classification task.

In addition, we give the detailed classification results among
all categories in terms of F-measure in Table 2. From this table,
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Table 2
The detailed results for F-measure among all categories.
Category CNN RCNN LSTM Bi-LSTM C-LSTM ServeNet ServeNet-BERT Graph4Web

Financial 0.450 0.639 0.523 0.578 0.574 0.650 0.815 0.796
Enterprise 0.093 0.549 0.390 0.561 0.377 0.571 0.774 0.607
Payments 0.268 0.686 0.651 0.689 0.747 0.696 0.941 0.787
Internet of Things 0.441 0.828 0.815 0.920 0.820 0.911 0.563 0.578
eCommerce 0.563 0.774 0.776 0.750 0.737 0.785 0.739 0.761
Mapping 0.000 0.600 0.240 0.400 0.516 0.533 0.926 0.811
Telephony 0.169 0.263 0.116 0.269 0.296 0.296 0.700 0.729
Shipping 0.512 0.750 0.833 0.880 0.816 0.898 0.357 0.836
Video 0.187 0.661 0.469 0.619 0.700 0.660 0.727 0.852
Images 0.545 0.690 0.417 0.500 0.560 0.588 0.780 0.485
Backend 0.000 0.279 0.167 0.227 0.195 0.255 0.609 0.630
News Services 0.423 0.738 0.615 0.767 0.744 0.795 0.306 0.667
Data 0.404 0.796 0.667 0.791 0.743 0.716 0.476 0.531
Search 0.125 0.682 0.392 0.714 0.619 0.698 0.551 0.516
Cloud 0.310 0.604 0.485 0.590 0.539 0.606 0.606 0.576
Events 0.408 0.733 0.837 0.766 0.765 0.750 0.800 0.818
Application Development 0.164 0.575 0.383 0.587 0.521 0.508 0.615 0.383
Marketing 0.222 0.376 0.374 0.395 0.447 0.443 0.538 0.625
Photos 0.313 0.852 0.717 0.840 0.826 0.917 0.806 0.686
Chat 0.471 0.729 0.690 0.739 0.732 0.752 0.409 0.757
Banking 0.276 0.756 0.698 0.703 0.676 0.742 0.559 0.769
Domains 0.093 0.000 0.000 0.000 0.000 0.059 0.872 0.875
Bitcoin 0.065 0.378 0.140 0.333 0.143 0.391 0.556 0.793
Travel 0.000 0.177 0.094 0.107 0.333 0.296 0.661 0.857
Other 0.462 0.750 0.111 0.759 0.821 0.848 0.450 0.237
Messaging 0.304 0.585 0.409 0.595 0.464 0.594 0.070 0.789
Science 0.000 0.345 0.250 0.400 0.214 0.465 0.389 0.746
Database 0.303 0.710 0.742 0.753 0.629 0.779 0.773 0.473
Stocks 0.056 0.000 0.000 0.186 0.115 0.071 0.764 0.943
Games 0.294 0.683 0.486 0.757 0.732 0.737 0.794 0.824
Social 0.253 0.826 0.761 0.690 0.761 0.769 0.783 0.646
Sports 0.452 0.693 0.722 0.738 0.733 0.735 0.871 0.925
Weather 0.143 0.622 0.667 0.713 0.725 0.711 0.833 0.847
Real Estate 0.233 0.727 0.473 0.645 0.720 0.581 0.729 0.837
Advertising 0.167 0.750 0.485 0.722 0.647 0.683 0.782 0.639
Transportation 0.167 0.316 0.000 0.250 0.100 0.167 0.832 0.841
Music 0.438 0.700 0.500 0.694 0.727 0.683 0.791 0.895
Entertainment 0.211 0.516 0.432 0.489 0.407 0.605 0.653 0.595
Media 0.130 0.244 0.150 0.229 0.105 0.244 0.408 0.564
Analytics 0.260 0.469 0.406 0.513 0.479 0.503 0.444 0.488
Tools 0.067 0.171 0.227 0.465 0.000 0.278 0.706 0.568
Security 0.095 0.400 0.143 0.222 0.455 0.308 0.821 0.679
Education 0.152 0.429 0.327 0.427 0.481 0.506 0.595 0.756
Medical 0.091 0.519 0.385 0.643 0.514 0.545 0.866 0.609
Reference 0.061 0.595 0.587 0.693 0.667 0.692 0.826 0.362
Storage 0.259 0.667 0.647 0.725 0.737 0.700 0.913 0.718
Email 0.557 0.782 0.780 0.786 0.814 0.800 0.480 0.871
Project Management 0.000 0.267 0.080 0.095 0.095 0.174 0.629 0.644
File Sharing 0.150 0.453 0.300 0.493 0.509 0.554 0.667 0.645
Government 0.080 0.741 0.516 0.667 0.710 0.815 0.551 0.790

Average 0.238 0.561 0.441 0.562 0.536 0.581 0.662 0.693
we can find that CNN produces a strongly negative impact on
the performance of web service classification task. By contrast,
our Graph4Web model achieves the promising performance im-
provements among all categories and obtains the best F-measure
value on 22 out of 50 categories, especially on some categories
like ‘Bitcoin’ and ‘Stocks’. However, we can also see from Table 2
that our Graph4Web method obtains worse performance on some
categories than the state-of-the-art model ServeNet-BERT, espe-
cially on the category ‘Reference’. Here, we try to analyze this
phenomenon in terms of the actual meaning of the data and the
model itself. From the aspect of categories, such as ‘Reference’ and
‘Bitcoin’, the category ‘Reference’ is a more general expression
which means that various web service descriptions may not focus
on a smaller application area, whereas another category ‘Bitcoin’
is more specific and web service descriptions in this category
always contain the domain specific words, such as ‘currency’,
‘price’, and even ‘Bitcoin’ itself. Besides, from the aspect of the
model architecture, ServeNet-BERT adopting the CNN for feature
extraction is benefit to extract the local information and may
learn the changes of description details due to the translation
8

and scale invariance of CNN (Yu et al., 2020). In contrast, our
Graph4Web based on the GNN model learns the neighborhood
relationships and may more suitable for obtaining domain spe-
cific information because similar web service descriptions in the
same domain may hold similar neighborhood information in their
corresponding dependency graphs.

Answer to RQ1

Our proposed Graph4Web model obtains the best per-
formance compared with seven representative methods
in terms of three indicators for web service classification
task.

6.2. RQ2: How effective is our Graph4Web model compared with its
variants?

Methods: To answer this question, we explore the effec-
tiveness of our Graph4Web model from different aspects. More
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Table 3
The average results for Graph4Web and its variants.
Method Precision Recall F-measure

Graph4WebGlove 0.462 0.404 0.419
BERTonly 0.681 0.671 0.670
Graph4WebGCN 0.691 0.668 0.673
Graph4WebGAT 0.682 0.673 0.674
Graph4Web 0.702 0.690 0.693

specifically, we generate the following four variants for compari-
son by removing and substituting some components used in our
model.

• Graph4WebGlove: This variant utilizes the statical Glove tech-
nique to replace the BERT for initializing the node em-
bedding vector, aiming at exploring how BERT impacts the
performance of our model.

• BERTonly: This variant only uses the BERT model for web ser-
vice classification, aiming at investigating the effectiveness
of our proposed RAGA layer.

• Graph4WebGCN : This variant only employs the original graph
convolutional neural network (Kipf and Welling, 2016) to
update the node embedding and ignores the information
originated from the neighborhood nodes and their relation-
ships, aiming at exploring whether this information impacts
our model.

• Graph4WebGAT : This variant removes the different types
of relationship information between nodes and only takes
into account the neighbors information for updating node
embedding, aiming at investigating the influence of relation-
ships.

Results: Table 3 shows the average value of our Graph4Web
odel and its four variants with three indicators. Fig. 6 depicts

he box plot of the five methods among all categories in terms of
recision, Recall, and F-measure, respectively. From the table and
igure, we can find that, in terms of Precision, the average value
y Graph4Web achieves improvements by 51.9%, 3.2%, 1.7%, and
.9% compared with Graph4WebGlove, BERTonly, Graph4WebGCN ,
nd Graph4WebGAT , individually. In terms of Recall, the average
alue by Graph4Web achieves improvements by 70.9%, 2.8%, 3.4%,
nd 2.6% compared with its four variants, individually. In terms of
-measure, the average value by Graph4Web achieves improve-
ents by 65.2%, 3.4%, 3.0%, and 2.8% compared with its four
ariants, individually. Overall, our Graph4Web model achieves
verage improvements by 14.9%, 19.9%, and 18.6% in terms of
recision, Recall, and F-measure, respectively.
BERT yields performance improvement compared with the

tatical word embedding technique Glove to a large extent,
hereas our proposed RAGA layer taking into account both the
eighborhood nodes and relationship information further pro-
otes the classification performance. Compared with
raph4WebGCN and Graph4WebGAT , only considering the neigh-
ors information does not seem to affect the model performance,
hich indicates that the distinct kinds of relationships between
odes possess abundant semantic and syntactic information.

Answer to RQ2

Both the BERT initialization technique and our proposed
RAGA layer bring a positive influence on web service
classification.
9

Fig. 6. The box plot of the average value for Graph4Web and its variants among
all categories in terms of three indicators.

6.3. RQ3: Can service name improve the performance of our
Graph4Web model?

Methods: To answer this question, we use the BERT to tok-
enize and initialize the name sequence and aggregate the name
embedding with the description embedding after updating by the
RAGA layers, short for Graph4Webboth. In addition, we treat the
model that only uses the name embedding vectors for classifica-
tion, short for Graph4Webname as the basic method for
comparison.

Results: Table 4 demonstrates the average value of our
Graph4Web model with different service information in terms
of three indicators, and Fig. 7 illustrates the box plot of these
methods among all categories in terms of Precision, Recall, and
F-measure, respectively. From the table and figure, we can find
that, only using the service name for classification results in
poor performance among the three indicators because the name
sequence merely specifies this service but the significant se-
mantic information of the web services is always included in
its description sequence. By virtue of the service description
information, our Graph4Web model obtains average improve-
ments by 65.5%, 70.2%, and 70.1% compared with Graph4Webname
in terms of Precision, Recall, and F-measure, respectively. In
addition, the model combining both the name and description
information (i.e., Graph4Webboth) does not observe the significant
performance improvement but even exhibits slight performance
deterioration in terms of Precision and F-measure indicators. As
a consequence, due to that encoding the name sequence into
embedding vectors will produce extra resource consumption,
the service description with sufficient semantic information are
adequate to deal with web service classification task.
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Fig. 7. The box plot of the average value for Graph4Web with different service information among all categories in terms of three indicators.
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Table 4
The average results for Graph4Web with different service information.
Method Precision Recall F-measure

Graph4Webname 0.424 0.406 0.408
Graph4Webboth 0.690 0.691 0.685
Graph4Web 0.702 0.690 0.693

Answer to RQ3

Service names are not always required, and model-
ing informative service descriptions can yield promising
performance for web service classification.

7. Discussion

As an effective way for service discovery, web service classifi-
ation has attracted much more attention in recent studies (El-
azzar et al., 2010; Elshater et al., 2015; Hao et al., 2010; Liu
nd Wong, 2009; Yang et al., 2019, 2020). As we mentioned in
he motivating example, web service classification can determine
hich category one web service belongs to, aiming at promoting
he maintenance and management process of service brokers in
evelopment communities. In addition, the well organized web
ervices make it easier for beginners or developers to retrieve
nd pick up the suitable one to satisfy their development need.
n this work, we propose a novel model, called Graph4Web, to
acilitate this process. We briefly explain how can developers use
ur model. Giving an example as shown in Fig. 8, we can first
rain our Graph4Web based on the storage data of web services
ollected from service repositories such as ProgrammableWeb
n an offline manner. Once the model training finished, we can
pload and deploy our model online and provide an interface to
ake users and developers call easily. For a developer who wants

o issue a new web service, she can invoke the interface of our
odel deployed on a server by passing through the web service
escription. Then, the server will return the suitable category
o her to accelerate the web service issuing process. Note that,
he storage data of web services can be enriched and updated
hen new web services appearing in the service repositories.
y training and deploying the Graph4Web model periodically,
evelopers will obtain more appropriate and precise category
rediction results. We follow previous studies only selecting
op 50 categories as candidate data to build our classification
odel because these categories are more common. However, for
ome emerging categories, our model may predict them as the
ategory ‘Other’ rather than an exact and specific category. This
s a common solution in previous studies (Yang et al., 2019, 2020)
10
Fig. 8. The application process of our model.

ecause the number of new categories is relatively small. We will
xplore this issue and find better solutions in the future.

. Threats to validity

.1. Threats to internal validity

This kind of threats lies in the potential coding faults dur-
ng the implementation of our experiments. To eliminate the
hreats, we implement our Graph4Web model based on PyTorch
nd the off-the-shelf third-part libraries, such as AllenNLP4. For

the comparative methods, we carefully modify the source code
provided by the previous study (Yang et al., 2020) to satisfy our
requirements. In addition, the hyper-parameters tuning is also a
threat to internal validity. To reduce the threats, we fine-tune the
batch size from {16, 32, 64} and the learning rate from {1e−3,
e−4, 1e−5}, and select the best parameter settings, i.e., batch
ize as 32 and learning rate as 1e−5, for our experiments. We
tack two RAGA layers and keep them the same during the fine-
uning. Other choices of the number of RAGA layers possibly bring
etter performance and we leave that for the future work.

.2. Threats to external validity

This kind of threats focuses on the generalizability of our
odel. We follow the previous studies (Yang et al., 2019, 2020)
nd conduct experiments on a web service dataset collected from
he ProgrammableWeb site. This is a publicly available dataset,
nd it can help future researchers replicate our results. We are
onscious that it would be better to verify our model with the
eb services from other repositories (such as the GitHub repos-

tory), we leave the exploration as the future work. Besides, we
hoose two state-of-the-art models for web service classification
nd five deep learning based methods that have achieved sat-
sfactory performance in previous studies as baseline methods.

4 https://github.com/allenai/allennlp.

https://github.com/allenai/allennlp
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ore advanced classification models for other similar tasks are
lso needed to be explored to investigate the superiority of our
odel.

.3. Threats to construct validity

This kind of threats fastens on the suitability of the used
erformance indicators. As the web service classification task
an be treated as the multi-classification task, in this work, we
mploy three indicators, i.e., Precision, Recall, and F-measure,
s the evaluation metrics. Another kind of threats to construct
alidity relates to the practicability of our model. The goal of our
ork is to determine which category on web service belongs to,
iming at finding the suitable web services from repositories to
eet requirements of developers. The experiment results show

he superiority of our model, which means that our model is
easible in such task.

. Conclusion

In this work, we propose a novel model, called Graph4Web, to
etermine which category one web service belongs to.
raph4Web first encodes the dependent relationship from the
eb service description sequence into the dependency graph to
epresent the intrinsic semantic and syntactic information, and
hen the BERT model is adopted to initialize the embedding vector
or each node. We further propose a RAGA layer to learn and
pdate the node embedding in the dependency graph, in which
ach node is updated by aggregating both its neighborhood nodes
nd the corresponding different types of relationship information
imultaneously. Then we employ the self-attention mechanism
o obtain the high-level global representation for web service
lassification. We have conducted various experiments on the
eal-world dataset with three performance indicators and the re-
ults have shown that our Graph4Web successfully outperformed
even baseline methods.
In the future, we plan to collect more real-world web services

o verify the generalization ability of our model. In addition, we
ill consider the data sparsity issue into the model construction.
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