
The Journal of Systems & Software 187 (2022) 111219

J
a

b

c

s
m
c
c
f
m
s
v
g
d
s
a
m
e
t
d
p

h
0

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

Exploiting gated graph neural network for detecting and explaining
self-admitted technical debts✩

iaojiao Yu a, Kunsong Zhao a, Jin Liu a,∗, Xiao Liu b, Zhou Xu c, Xin Wang a

School of Computer Science, Wuhan University, Wuhan, China
School of Information Technology, Deakin University, Geelong, Australia
School of Big Data and Software Engineering, Chongqing University, Chongqing, China

a r t i c l e i n f o

Article history:
Received 25 May 2021
Received in revised form 19 December 2021
Accepted 5 January 2022
Available online 10 January 2022

Keywords:
Technical debt
Self-admitted technical debt
Gated graph neural network
Attention mechanism

a b s t r a c t

Self-admitted technical debt (SATD) refers to a specific type of technical debt that is introduced
intentionally in the software development and maintenance processes. SATD enables practitioners
to take some temporary solutions instead of making comprehensive decisions, which will lead to
the high complexity of the software. However, most existing studies relied on manual methods for
detecting SATDs. A recent study proposed a method HATD that used a hybrid attention-based method
to automatically detect SATDs and it achieved the state-of-the-art performance. However, HATD mainly
focused on the locality of the comment instances and lacked of the relationship between long-distance
and discontinuous comment instances. To address such an issue, in this work, we propose a novel
approach named GGSATD. Specifically, GGSATD first builds the graph for comment instances and
then employs the gated graph neural network to iteratively update node representation. The global
representation can be obtained by the soft attention mechanism and pooling operation. Experiments
on 10 projects show that our GGSATD method obtains promising performance against five baseline
methods in both within-project and cross-project scenarios. Extended experiments on seven real-world
projects illustrate the effectiveness of our GGSATD method.

© 2022 Elsevier Inc. All rights reserved.
1. Introduction

Technical debt was proposed by Cunningham which was de-
cribed as ‘‘not quite right code’’ (Cunningham, 1992). It is a
etaphor that developers have to make compromises and de-
isions about shortcuts or workarounds to satisfy the needs of
urrent software development goals. Due to some irresistible
actors, such as fast delivery time and shortened budget, which
ake current goals too hard to reach, developers need to take
ub-optimal measures to meet them (Lim et al., 2012). If de-
elopers constantly use sub-optimal solutions to reach current
oals, the accumulation of such behaviors will generate technical
ebts during the development process. Technical debts exist in
oftware projects commonly. For example, a developer chooses
technical framework to implement a function in a software
odule but it is obsoleted in the later version, meanwhile a test
ngineer just completes simple functional test in the module but
he complexity test and stress test are forgotten. Those technical
ebts are intentionally or unintentionally introduced to software
rojects and there are no traceable materials to locate them in

✩ Editor: Neil Ernst.
∗ Corresponding author.

E-mail address: jinliu@whu.edu.cn (J. Liu).
 1

ttps://doi.org/10.1016/j.jss.2022.111219
164-1212/© 2022 Elsevier Inc. All rights reserved.
the future. As software versions and maintainers change, these
unsolved technical debts will never be traced and remain in
the software program forever. To alleviate this issue, Potdar and
Shihab (Potdar and Shihab, 2014) first proposed the conception of
self-admitted technical debts (SATDs), which is an intentionally
introduced technical debts recorded by code comments.1

Technical debts need to repay interest (Tom et al., 2013; We-
haibi et al., 2016; Zazworka et al., 2013), which is the increased
costs of manpower and resources for software maintenance in
later. Thus, both intentionally and unintentionally technical debts
can produce negative impacts on software maintenance in the
long run (Izurieta et al., 2017; Li et al., 2015a; Point and from
Dagstuhl). The impact of technical debts is exponential, which
means that developers need to spend more time relieving them.2

The persistent impact of technical debts leads to a slowdown
in development progress and a reduction in productivity (Am-
patzoglou et al., 2015; Bavota and Russo, 2016; Kruchten et al.,
2012). However, it is ubiquitous and inevitable in the process of
software development (Xuan et al., 2017; Foucault et al., 2018).
Furthermore, both Wehaibi et al. (2016), Miyake et al. (2017)

1 We also call this code comment instance in this work.
2 https://medium.com/serious-scrum/the-hidden-cost-of-technical-debt-
963b958e5ed.

https://doi.org/10.1016/j.jss.2022.111219
http://www.elsevier.com/locate/jss
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2022.111219&domain=pdf
mailto:jinliu@whu.edu.cn
https://medium.com/serious-scrum/the-hidden-cost-of-technical-debt-1963b958e5ed
https://medium.com/serious-scrum/the-hidden-cost-of-technical-debt-1963b958e5ed
https://doi.org/10.1016/j.jss.2022.111219

J. Yu, K. Zhao, J. Liu et al. The Journal of Systems & Software 187 (2022) 111219

m
s
n
m
a
T
t
t
c
e
c
h
i
e
i
c
e
m
f

h
o
a
f
r
i
p
G
d
e
s
c
s
t
g
i
l
s
r

i
d
p
v
a
b
I
a
r
i
o
c
m
b
F

l

entioned that SATDs would have a long-term impact on the
oftware quality. Therefore, how to automatically identify tech-
ical debts for software quality assurance and reduce software
aintenance costs is a hot research topic in software engineering
rea (Li et al., 2015b; Marinescu, 2004; Zampetti et al., 2017).
here are many types of technical debts and they are difficult
o automatically identify and repair (Sierra et al., 2019). To solve
hese issues, previous studies concentrated on automatic identifi-
ation of SATDs due to that the SATDs distinctly and widespreadly
xist in the form of code comments, which is easier to be traced
ompared to other types of debts. Specifically, Potdar and Shi-
ab (2014) summarized 62 identification patterns manually to
dentify SATDs in source code comments of Java projects. Mensah
t al. (2016) proposed to use text mining based methods to
dentify SATDs. Yan et al. (2018) proposed a method to detect
hange-level SATDs using 25 software change features. Flisar
t al. (Flisar and Podgorelec, 2019) trained a word embedding
odel to enhance the original feature set and used the enhanced

eature set for SATD classification.
Nevertheless, the above-mentioned studies for detecting SATDs

ave two shortcomings (Liu et al.). First, for pattern based meth-
ds, they rely on manual modes and cannot identify SATDs
utomatically. Second, for machine learning based methods, they
ocus on the locality of the comment instances and lack of the
elationship between long-distance and discontinuous comment
nstances (Ma et al., 2021; Mittal et al., 2021). To solve these
roblems, we propose a deep learning based method, namely
GSATD that applies the gated graph neural network with the in-
uctiveness, to detect SATDs from source code comments (Zhang
t al., 2020). Instead of treating the code comment instance
equence as the model input directly, our method converts the
omment instance into the graph with co-occurrence relation-
hip. More specifically, first, we use the code comment instance
o build the graph, then we learn the features through the gated
raph neural network (GGNN) that makes the features of nodes
n each graph can be learnt more effectively. After the feature
earning finished, the node representation the model learnt is
ent into two multilevel perceptrons to obtain high-level feature
epresentation followed by a softmax layer for SATD detection.

We conduct the experiment on a benchmark dataset that
ncludes 10 software projects released by a previous work (Mal-
onado et al., 2017) with three performance indicators. Our ex-
eriment results show that, in within-project scenario, the mean
alues of Precision, Recall, and F1-score obtained by our method
re 0.916, 0.884, and 0.895, respectively. Compared to the five
aseline methods, the F1-score improves from 8.75% to 38.54%.
n cross-project scenario, the mean values of Precision, Recall,
nd F1-score obtained by our method are 0.879, 0.849, and 0.862,
espectively. Compared to the five baseline methods, the F1-score
mproves from 7.75% to 36.83%. To further verify the generation of
ur model, we collect seven new software projects with 152,569
omments in real world. In the seven extended projects, our
ethod also achieves better prediction performance than the five
aseline methods, i.e., Precision of 0.899, Recall of 0.950, and
1-score of 0.921.
The main contributions of this paper are summarized as fol-

ows:

• We propose a novel method called GGSATD to detect SATD
automatically. To the best of our knowledge, we are the first
to introduce the gated graph neural network for this task.

• GGSATD incorporates the soft attention and pooling mech-
anisms, which has the potential to learn and update the
embeddings of nodes and generate better graph level rep-
resentation.
2

• Comprehensive experiments on 10 open-source software
projects show that our GGSATD method performs better
than five baseline methods with three performance indica-
tors.

The remainder of the paper is organized as follows. Sec-
tion 2 introduces the relevant background knowledge. Section 3
presents our method in detail. Section 4 introduces the experi-
mental setup. Section 5 demonstrates the experimental results.
Section 6 presents some discussions about our model. Section 7
analyzes the threats to validity. Section 8 concludes the paper and
points out the future work.

2. Background and related work

2.1. The characteristics of SATDs

To reduce the cost of locating the defects when modifying the
code later, developers usually use comments to indicate whether
the code contains technical debts. However, code comments also
have their characteristics so that SATDs are too hard to be found.
SATDs have the following characteristics:

Length diversity: The code comments that contain SATDs can
be represented as one word (such as ‘‘wtf’’), two words (such as
‘‘not implemented’’ and ‘‘ugly workaround’’), and three words (such
as ‘‘unused in parent’’) (Maldonado et al., 2017), which indicates
that code comments have different lengths.

Project uniqueness: Generally, a project needs to be im-
plemented by several developers and each developer has their
own coding style. Different developers and various coding styles
lead to the diversity of the code comments in the project. For
example, the comment ‘‘wtf’’ in JEdit does not appear in other
projects (Maldonado et al., 2017). Thus, code comments of each
project are unique because of different developers.

Rich semantics: There is not just one way to describe things,
and we can describe meaning of a sentence in many ways. Taking
the sentence ‘‘this may be negative’’ as an example, this sentence
can be replaced as ‘‘this may be not positive’’ (Maldonado et al.,
2017), which also expresses the same meaning.

2.2. Identifying self-admitted technical debt

There are two popular ways to identify SATDs, i.e. pattern-
based methods and machine learning based methods.

De Freitas Farias et al. (2015) proposed a contextualized vo-
cabulary model for identifying SATDs. Their experimental results
on two open source projects showed that the model may sup-
port the development team to detect SATD using code comment
analysis. Maldonado and Shihab (2015) proposed an open-source
dataset and classified SATDs into five types manually. Their ex-
perimental results on five open source projects showed that the
design debt was the most common type of SATDs. Huang et al.
(2018) proposed a text mining method to detect SATDs auto-
matically. They utilized feature selection technique to select key
features, and built a composite classifier that combined multiple
classifiers from different projects. Their experiment results on
eight open source projects showed that their method achieved
higher F1-score.

Maldonado et al. (2017) employed a natural language process-
ing technique to detect SATDs. They analyzed the production pro-
cess of the dataset and used maximum entropy to identify SATDs.
Their experiment results on 10 open source projects showed
that their method achieved a good accuracy even with a rela-
tively small training set. Wattanakriengkrai et al. (2018) proposed
a machine learning model to identify SATDs which combined
N-gram inverse document frequency and auto-sklearn machine
learning. They conducted experiments on 10 projects and the

J. Yu, K. Zhao, J. Liu et al. The Journal of Systems & Software 187 (2022) 111219

r
t
R
d
r
m

2

2
n
(
d
l
p
g

m
t
t
n
d
W
c
e
m
a
a
o
m
m
n
t

3

3

t
d
c
t
S
a
a
r
u
u
a
c
s

3

a

m

t
t

p
m
i
f
c
o
t
0
u
w

v
v

esults showed that their method obtained higher F1-score than
he baseline methods to identify requirement and design debts.
en et al. (2019) proposed a neural network based model to
etect SATDs. They conducted experiments on 10 projects and the
esults showed a significant performance improvement of their
ethod.

.3. Graph neural network

In recent years, graph neural networks (GNN) (Scarselli et al.,
008) have been widely used in various fields, such as social
etworks (Fan et al., 2019; Islam et al., 2019), knowledge graphs
Koncel-Kedziorski et al., 2019; Park et al., 2019), recommen-
ation systems (Yin et al., 2019; Wu et al., 2019b), and even
ife sciences (Wang et al., 2021; Yang et al., 2021). GNN has a
owerful function in modeling the dependency relationship of
raph structures.
Peng et al. (2018) proposed a graph-CNN based deep learning

odel to classify hierarchical text. Their experiment results on
wo datasets showed that their model significantly improved
he performance. Yao et al. (2019) employed graph-based neural
etworks to classify text. They conducted experiments on five
atasets and the results showed the effectiveness of their model.
u et al. (2019a) explored the method that reduced excess

omplexity of graph convolutional networks. They conducted
xperiments on eight datasets and the results showed that their
ethod did not negatively impact the accuracy in downstream
pplications. Huang et al. (2019) proposed a graph network model
t the text level for text classification. Their experiment results
n three datasets showed that their model outperforms existing
odels in text classification task. Pal et al. (2020) proposed a
ulti-label text classification model based on graph attention
etwork. Their experiment results on five datasets showed that
heir model achieved better performance.

. Method

.1. Overview

Fig. 1 presents an overview of our proposed GGSATD method
hat consists of the following four steps. Firstly, we build the
ocument graph by using the comment instance from the source
ode and generate the corresponding adjacent matrix. Noting
hat, the edges in this graph are non-weighted in our work.
econdly, the gated graph neural network (Li et al., 2015c) is
pplied to update iteratively the node representation with the
djacent matrix generated by the previous step to learn more
epresentative features for each node. After the graph information
pdate finished, in the third step, the representation layout is
sed to process high-level features. Finally, the feature vectors
re input into the softmax layer for identifying whether this
omment instance is a SATD. Below, we present the detail of each
tep.

.2. Build document graph

A graph consists of a set of nodes and relationship-edges. For
given graph G(V , E) in which V = {v1, v2, . . . , v|V |} denotes the

node set and E = {e1, e2, . . . , e|E|} denotes the edge set. |V | and
|E| denote the number of nodes and edges, respectively. If the
edge between two nodes in the graph is undirected, the graph
is deemed to an undirected graph. 2 shows an example of an
undirected graph. Assume that nodes v1 and v2 have an edge, they
are called mutually adjacent to each other. We use the adjacency

matrix to store the edge relationship between the nodes. 2 shows

3

Fig. 1. The overview process of our method.

Fig. 2. (a) Undirected graph. A simple undirected graph is composed of three
nodes v1 , v2 , and v3 , and the undirected edges between them. (b) The storage
ethod of the adjacency matrix.

he node set of the undirected graph and the adjacency matrix of
his graph.

We construct the node set of the graph in three steps. First, we
reprocess the original data, such as delete redundant spaces and
eaningless symbols. Second, we convert the preprocessed data

nto word vectors through the pre-trained model Global vectors
or word representation (Glove) (Pennington et al., 2014), which
an better represent the semantics and grammars. Third, for the
ut of vocabulary (OOV) words that do not appear in the pre-
rained model Glove, we randomly sample values from −0.01 to
.01 as the word vector. We construct the edge set of the graph
sing the co-occurrence relationship between words in a sliding
indow.
Taking the comment instance ‘‘Fixme we should really assert a

alue here’’, as an example, we convert this instance into the word
ector and mark it as h(h1, h2, h3, . . . , hV), h ∈ R|V |×d, in which d

is the dimension of the word embedding. As shown in Fig. 3, the
co-occurrence relationship in a sliding window (the dotted line)
is converted as the edges in the document graph.

3.3. Graph-gated neural network

Gate mechanism can control the capacity of information
needed to be retained or discarded, and the capacity of new state
information needed to be stored in the memory unit. In order to

J. Yu, K. Zhao, J. Liu et al. The Journal of Systems & Software 187 (2022) 111219

e
g

(
n
c
p
a
o
u
a
c

F
f

T
i
c

r

r
m

h̃

3

w
F
r

H

w
n
t
t
t
w
t

t
a
t
t
i

h

w
b

t
w

f

Fig. 3. An example for building document graph.

ffectively propagate and update information in the graph, the
ate mechanism is introduced in our method.
Li et al. (2015c) incorporated the Gated Recurrent Unit (GRU)

Cho et al., 2014) into GNN, which unrolled the loop in a fixed
umber of steps T and used back propagation over time to cal-
ulate the gradient. GGNN is a classical spatial domain message
assing model (Gilmer et al., 2020) that includes three oper-
tions: message passing operation, update operation, and read
peration. Inspired by this, we integrate gate mechanism to the
pdate process of the graph representation, which takes the
dvantage of updating information by fixed steps and ensuring
onvergence without constraining parameters (Wu et al., 2020).
We start with the flow chart of the GRU as shown in Fig. 4.

irst, we use the adjacency matrix of the node to transmit in-
ormation. We set the information to be passed as I , which is
formulized as follows:

I t = Xht−1WI (1)

where X represents an adjacency matrix, ht−1 represents the
feature vector of the node under step t − 1, and W I presents the
trainable parameter.

Second, we need to set up an update gate and zt is used as
a substitute symbol. It can control how many historical states
(i.e., h1, h2, . . . , and ht−1) and candidate states needed to be
retained for the output state ht at the current step, which is
formulized as follows:

zt = σ (Wz I t + Uzht−1
+ bz) (2)

where Wz , Uz , and bz are trainable parameters, and σ represents
the sigmoid function.

Third, we need to set up a reset gate and we define it as r t .
he goal of reset gate is to determine whether the previous state
nformation is needed and how much is it needed for the current
andidate state, which is formulized as follows:
t
= σ (Wr I t + Urht−1

+ br) (3)

where Wr , Ur , and br are trainable parameters.
Fourth, we define the candidate state h̃t including the cur-

ent node representation and previous information, which is for-
ulized as follows:

t
= tanh(WhI t + Uh(r t ⊙ ht−1) + bh) (4)

where Wh, Uh, and bh are trainable parameters. ⊙ is element-wise
multiplication.

Finally, we update the current state ht by forgetting the unnec-
essary information and reserving key information from candidate
state h̃t , which is formulized as follows:

ht
= h̃t

⊙ zt + ht−1
⊙ (1 − zt) (5)

We repeat the above operations until the nodes are fully

updated. s

4

Fig. 4. The structure diagram of the GRU.

.4. Representation layout

After the completion of graph updating with the GGNN, we
ant to obtain a more effective representation at graph level.
irst, we use two multilayer perceptrons to get the enhanced
epresentation of the node, which is formulized as follows:

= σ (m1(H t) ⊙ tanh(m2(H t))) (6)

here m1 is a multilayer perceptron with soft attention mecha-
ism and m2 is a multilayer perceptron with non-linear feature
ransformation. Soft attention mechanism is a global calcula-
ion way proposed by Bahdanau et al. (2014), which calculates
he weight probability for all nodes and each node has its own
eight. In addition, we use the non-linear model m2 to enhance
he node representation.

We merge node information to form a graph-level represen-
ation. We use the average-pooling algorithm (Yu et al., 2014)
nd the max-pooling algorithm (Christlein et al., 2019) to obtain
he graph-level representation based on the node representa-
ion. Average pooling retains the characteristics of global node
nformation, which is defined as follows:

g−a =
1

|V |

∑
H (7)

where hg−a represents the graph-level representation produced
by the avg-pooling operation.

Maximum pooling can extract the most prominent features,
which is defined as follows:

hg−m = maxpooling(h1, . . . , hV) (8)

here hg−m represents the graph-level representation produced
y the max-pooling operation.
Then, we concatenate the results of the above two operations

o get a graph-level representation of the code comment instance,
hich is defined as follows:

hg = hg−a ⊕ hg−m (9)

where ⊕ represents the concatenation operation. Finally, we take
the graph-level representation hg as the final embedding vector
ollowed by the softmax layer to detect SATDs. This process is

hown in Fig. 5.

J. Yu, K. Zhao, J. Liu et al. The Journal of Systems & Software 187 (2022) 111219

4

4

a

i

n
d
l
o
a

m

c
a
o
t
i
i
f
G
m

S

p
e
m
i

4

c
l

Table 1
Statistics of the 10 projects.
Project Version #Contributors #Comments #F-Comments #SATDs %SATDs

Apache Ant 1.7.0 74 21,587 4,137 131 0.6%
ArgoUML 0.34 87 67,716 9,548 1,413 2.08%
Columba 1.4 9 33,895 6,478 204 0.6%
EMF 2.4.1 30 25,229 4,401 104 0.41%
Hibernate 3.3.2 226 11,630 2,968 472 4.05%
JEdit 4.2 57 16,991 10,322 256 1.5%
JFreechart 1.0.19 19 23,475 4,423 209 0.89%
JMeter 2.1 33 20,084 8,162 374 1.86%
JRuby 1.4.0 328 11,149 4,897 662 5.57%
SQuirrel 3.0.3 46 27,474 7,230 285 1.04%

Average – – 25,923 6,257 411 1.86%
t
o
c
c
h
t
c
m
n
a

4

G
w
m
o
3
s
r
m
1

4

w
i
e
i

Fig. 5. The structure of representation layout layer.

. Experimental setup

.1. Research questions

To measure the performance of our method, we design and
nswer the following three research questions (RQs).
RQ1 : Does our proposed GGSATD method effectively detect SATDs

n both within-project and cross-project scenarios?
As our proposed GGSATD method exploits gated graph neural

etwork to effectively update the information derived from the
ocument graph and learn the global representation at graph
evel, this question is designed to evaluate the effectiveness of
ur GGSATD for automatic SATD classification in within-project
nd cross-project scenarios.
RQ2 : Is our proposed GGSATD method superior to other existing

ethods?
Recently, researchers have proposed some methods for textual

lassification task and have shown promising performance (He
nd Zhu, 2019; Hu et al., 2020; Sachan et al., 2019). As the goal
f our proposed GGSATD method help developers to identify
he intentional technical debt in the comment instance, aim-
ng at reducing the difficulty of later software maintenance and
mproving software quality, it can also be deemed as a text classi-
ication task. This question is designed to investigate whether our
GSATD method can achieve better performance than existing
ethods for automatically identifying SATDs.
RQ3 : How effective is our proposed GGSATD method for detecting

ATDs in real-world projects?
As our proposed GGSATD can automatically identify SATDs in

ublicly available projects released by the previous work (Ren
t al., 2019), this question is designed to explore whether our
ethod is also effective in real-world projects, which is very

mportant for engineering applications.

.2. Dataset

In this work, we conduct experiments on a benchmark dataset
ollected by Maldonado et al. (2017), which consists of the fol-
owing 10 open source projects:
5

Apache Ant is a tool to automate software compilation, testing,
deployment and other steps in Java environment; ArgoUML is
an open source UML modeling tool for Java platform; Columba
is an email client based on Java; EMF is an Eclipse-based model
framework which can transform the model into efficient, cor-
rect, and easy-to-customize Java code; Hibernate is a framework
for object relationship mapping; JEdit is a text editor based on
Java; JFreechart is an open chart drawing library on Java plat-
form; JMeter is a stress testing tool based on Java; JRuby is an
implementation of the Ruby language; SQuirrel is a database
client.

The procedure for collecting this dataset is as follows. First,
Maldonado et al. (2017) used an Eclipse plug-in (i.e. JDeodorand3)
o extract code comments from 10 open source projects. Sec-
nd, they used five heuristic rules to filter the comments and
lassified them manually. Finally, they used the Cohen’s Kappa
oefficient (Cohen, 1968) to demonstrate that the dataset had a
igh confidence. Table 1 shows the basic statistic information of
he 10 projects, including the projects version, the number of
ontributors (#Contributors), the number of comments (#Com-
ents), the number of filtered comments (#F-Comments), the
umber of comment instances that are labeled as SATD (#SATDs),
nd the proportion of SATDs (%SATDs).

.3. Parameter settings

We map each node into a 300-dimensional vector using the
love technique. For building graph from code comment instance,
e choose the size of the sliding window as 6. For training
odel, we set the learning rate as 0.001 which can make the
bjective function locally converge. We set the batch size as
2, the dropout as 0.5, and the size of hidden layer as 96. We
tack two layers of GGNN units to iteratively update the node
epresentation. We have released the code scripts and bench-
ark dataset at https://figshare.com/articles/dataset/JSS-Graph/
6869737 for reproducing our experiments.

.4. Performance indicators

To evaluate the performance of our proposed GGSATD method,
e employ the Precision, Recall, and F1-score as the evaluation

ndicators following the previous studies (Huang et al., 2018; Ren
t al., 2019; Wang et al., 2020). There are four basic items used
n the indicators.

• TP: the number of the comment instances that are SATDs
and are predicted as SATDs;

• FP: the number of the comment instances that are non-
SATDs but are predicted as SATDs;

• TN: the number of the comment instances that are non-
SATDs and are predicted as non-SATDs;

3 https://marketplace.eclipse.org/content/jdeodorant.

https://figshare.com/articles/dataset/JSS-Graph/16869737
https://figshare.com/articles/dataset/JSS-Graph/16869737
https://figshare.com/articles/dataset/JSS-Graph/16869737
https://marketplace.eclipse.org/content/jdeodorant

J. Yu, K. Zhao, J. Liu et al. The Journal of Systems & Software 187 (2022) 111219

f

P

a

R

f

F

u
2
e

5

5
m

m
a

(
t
p
d
T
w
g
s
1
s
v

a
t
s
t
a

G

b
l

v
c
i
2
G
a
2
t
p
1
r
a
b
m
a
a

Table 2
The classification results of our model with three indicators in two scenarios.
Project Within Cross

Precision Recall F1-score Precision Recall F1-score

Apache Ant 0.826 0.754 0.779 0.806 0.818 0.811
ArgoUML 0.937 0.955 0.945 0.909 0.946 0.926
Columba 0.944 0.914 0.927 0.936 0.942 0.939
EMF 0.929 0.844 0.905 0.823 0.786 0.802
Hibernate 0.923 0.891 0.877 0.927 0.894 0.909
JEdit 0.854 0.797 0.820 0.864 0.720 0.782
JFreeChart 0.948 0.921 0.923 0.831 0.753 0.786
JMeter 0.951 0.919 0.933 0.905 0.899 0.902
JRuby 0.934 0.938 0.930 0.938 0.914 0.926
SQuirrel 0.912 0.903 0.907 0.851 0.820 0.834

Average 0.916 0.884 0.895 0.879 0.849 0.862

• FN: the number of the comment instances that are SATDs
but are predicted as non-SATDs.

Precision represents the reliability of the prediction, which is
ormulized as follows:

recision =
TP

TP + FP
(10)

Recall represents whether the model has the ability to predict
ll data, which is formulized as follows:

ecall =
TP

TP + FN
(11)

F1-score is a harmonic mean of Precision and Recall, which is
ormulized as follows:

1 − score =
2 × Precision × Recall
Precision + Recall

(12)

The above-mentioned three evaluation indicators are widely-
sed in software engineering tasks (Valdivia Garcia and Shihab,
014; Xia et al., 2015; Xu et al., 2020; Zhao et al., 2021b,c,a; Xu
t al., 2019).

. Results

.1. Answer to RQ1: the effectiveness of our proposed GGSATD
ethod for SATD classification

Methods: To answer this question, we explore the perfor-
ance of SATD classification in two scenarios, i.e. within-project
nd cross-project.
Within-project: we choose 10-fold cross-validation technique

Efron, 1983) to evaluate the effectiveness of GGSATD for de-
ecting SATD. Firstly, we divide the comment instances into two
arts, i.e., non-SATD and SATD instances. Secondly, we separately
ivide these two parts into ten subsets randomly with equal size.
hirdly, we combine a subset with SATD instances and a subset
ith non-SATD instances into a new subset every time, and we
et 10 such subsets. Then, we select nine subsets as the candidate
et and the remainder subset as the test set. We randomly select
0% comment instances as the validation set from the candidate
et and the remainder as the training set. We report the average
alues in our work.
Cross-project: we integrate nine projects as the source project

nd the remaining one project as the target project to conduct
he cross-project SATD classification task. Similarly, we randomly
elect 10% of the comment instances from the source project as
he validation set. We repeat this process 10 times and report
verage values.
Results: Table 2 presents the classification results of our

GSATD model on each project in two scenarios. Noting that, the
6

best results are marked in bold and the worst results are marked
with underline. From this table, we can see that, in the within-
project scenario, our model obtains the best Precision value of
0.951 in JMeter, the best Recall value of 0.955 and the best F1-
score value of 0.945 in ArgoUML. Our GGSATD method obtains
the average performance values with 0.916, 0.884, and 0.895 in
terms of Precision, Recall, and F1-score, respectively. In the cross-
project scenario, our model obtains the best Precision value of
0.938 in JRuby, the best Recall value of 0.946 in ArgoUML, and
the best F1-score value of 0.939 in Columba. Our method acquires
the average performance values with 0.879, 0.849, and 0.862 in
terms of Precision, Recall, and F1-score, respectively.

In Summary, our proposed GGSATD method achieves satis-
factory performance for identifying SATDs in within-project and
cross-project scenarios.

5.2. Answer to RQ2: the performance of our method compared to
other existing methods

Methods: In order to answer this question, we set up five
aseline methods for comparison, which are introduced as fol-
ows:

• HATD: this method (Wang et al., 2020) used a two-layer
Bi-LSTM network and single-head attention to compose a
SAE model, and used positional encoding and multi-head
attention mechanism to compose a MAE model. Then the
representation of SAE and MAE is concatenated to detect
SATDs. HATD is the current state-of-the-art method.

• CNN: this method (Ren et al., 2019) used convolutional
neural network to identify SATDs. The CNN model extracted
feature vectors from input comment instances through vol-
ume base layer and 1-max pooling operation, and classified
the comment instances according to the feature vectors.

• GCN: this method (Yao et al., 2019) built a graph based on all
the data in which each node is corresponding to the word
and text in the document and each edge is defined as the
co-occurrence relationship between nodes. The graph was
trained through two fully-connected layers, and the output
is classified through the softmax function.

• TLGNN: this method (Huang et al., 2019) was used GNN
to classification task on text level. The model constructed
a graph for each input text with global parameter sharing,
instead of constructing a single graph for the entire corpus.

• LSTM: this method (Silva, 1997) was a special recurrent
neural network that could retain long-term memory, which
solved the problems of gradient vanishing and gradient ex-
plosion in long sequence training.

Results: Tables 3–5 show the Precision, Recall and F1-score
alues in within-project scenario, respectively. From Table 3, we
an see that, our GGSATD method obtains the best Precision value
n seven projects and gets average improvements by 18.19%,
2.13%, 26.87%, 23.45%, and 32.18% compared with HATD, CNN,
CN, TLGNN, and LSTM, respectively. Our method obtains the best
verage Precision value and achieves an average improvement by
4.57% among five baseline methods. From Table 4, we can find
hat, our GGSATD method obtains the best Recall value in seven
rojects and achieves average improvements by 4.12%, 12.04%,
5.56%, 28.49%, and 35.58% compared with five baseline methods,
espectively. Our method obtains the best average Recall value
nd achieves an average improvement by 19.16% among five
aseline methods. From Table 5, we can observe that, our GGSATD
ethod obtains the best F1-score value in nine projects and
chieves average improvements by 8.75%, 19.81%, 21.44%, 26.95%,
nd 38.54% compared with five baseline methods, respectively.

J. Yu, K. Zhao, J. Liu et al. The Journal of Systems & Software 187 (2022) 111219

.

.

i
o
n
1
G
a
2
t
p
3
r
a
b
o
a
7
m
a

S

Table 3
Precision values of our method and the five baselines in within-project scenario
Project GGSATD HATD CNN GCN TLGNN LSTM

Apache Ant 0.826 0.705 0.323 0.550 0.517 0.484
ArgoUML 0.937 0.822 0.938 0.822 0.865 0.927
Columba 0.944 0.907 0.954 0.743 0.799 0.746
EMF 0.929 0.738 0.438 0.680 0.636 0.488
Hibernate 0.923 0.898 0.692 0.769 0.812 0.596
JEdit 0.854 0.502 0.856 0.640 0.590 0.771
JFreeChart 0.948 0.898 0.766 0.815 0.869 0.526
JMeter 0.951 0.734 0.935 0.709 0.764 0.855
JRuby 0.934 0.882 0.847 0.786 0.860 0.788
SQuirrel 0.912 0.664 0.750 0.711 0.707 0.744

Average 0.916 0.775 0.750 0.722 0.742 0.693

Table 4
Recall values of our method and the five baselines in within-project scenario.
Project GGSATD HATD CNN GCN TLGNN LSTM

Apache Ant 0.754 0.611 0.719 0.583 0.513 0.500
ArgoUML 0.955 0.918 0.943 0.825 0.876 0.951
Columba 0.914 0.952 0.827 0.787 0.745 0.708
EMF 0.844 0.853 0.719 0.698 0.594 0.500
Hibernate 0.891 0.887 0.916 0.793 0.744 0.506
JEdit 0.797 0.640 0.556 0.711 0.539 0.729
JFreeChart 0.921 0.903 0.583 0.860 0.735 0.502
JMeter 0.919 0.917 0.827 0.814 0.705 0.794
JRuby 0.938 0.931 0.918 0.826 0.817 0.753
SQuirrel 0.903 0.876 0.888 0.755 0.607 0.578

Average 0.884 0.849 0.789 0.765 0.688 0.652

Table 5
F1-score values of our method and the five baselines in within-project scenario
Project GGSATD HATD CNN GCN TLGNN LSTM

Apache Ant 0.779 0.655 0.445 0.559 0.513 0.492
ArgoUML 0.945 0.867 0.941 0.823 0.870 0.938
Columba 0.927 0.927 0.877 0.757 0.763 0.704
EMF 0.905 0.891 0.887 0.779 0.770 0.471
Hibernate 0.877 0.776 0.532 0.683 0.610 0.494
JEdit 0.820 0.556 0.591 0.664 0.552 0.743
JFreeChart 0.923 0.900 0.636 0.827 0.779 0.491
JMeter 0.933 0.892 0.872 0.748 0.726 0.811
JRuby 0.930 0.931 0.881 0.803 0.834 0.733
SQuirrel 0.907 0.836 0.813 0.730 0.636 0.582

Average 0.895 0.823 0.747 0.737 0.705 0.646

Our method obtains the best average F1-score value and achieves
an average improvement by 23.10% among five baseline methods.

Tables 6–8 show the Precision, Recall and F1-score values
n cross-project scenario, respectively. From Table 6, we can
bserve that, our method obtains the best Precision value in
ine projects and achieves average improvements by 22.25%,
1.55%, 37.13%, 21.24%, and 9.33% compared with HATD, CNN,
CN, TLGNN, and LSTM, respectively. Our method obtains the best
verage Precision value and achieves an average improvement by
0.30% among five baseline methods. From Table 7, we can find
hat, our GGSATD method obtains the best Recall value in five
rojects and achieves average improvements by 1.31%, 11.42%,
1.02%, 12.15%, and 5.20% compared with five baseline methods,
espectively. Our method obtains the best average Recall value
nd achieves an average improvement by 12.22% among five
aseline methods. From Table 8, we can see that, our method
btains the best F1-score value among all projects and achieves
verage improvements by 15.09%, 12.53%, 36.83%, 17.28%, and
.75% compared with five baseline methods, respectively. Our
ethod gets the best average F1-score value and achieves an
verage improvement by 17.89% among five baseline methods.
We apply a state-of-the-art method, namely Scott–Knott Effect

ize Difference (short for SKESD) test (Tantithamthavorn et al.,
7

Table 6
Precision values of our method and the five baselines in cross-project scenario.
Project GGSATD HATD CNN GCN TLGNN LSTM

Apache Ant 0.806 0.657 0.584 0.578 0.618 0.706
ArgoUML 0.909 0.818 0.812 0.576 0.823 0.890
Columba 0.936 0.794 0.830 0.741 0.711 0.843
EMF 0.823 0.664 0.793 0.657 0.643 0.717
Hibernate 0.927 0.756 0.930 0.647 0.851 0.893
JEdit 0.864 0.699 0.773 0.603 0.649 0.747
JFreeChart 0.831 0.678 0.686 0.717 0.674 0.761
JMeter 0.905 0.701 0.873 0.674 0.778 0.852
JRuby 0.938 0.758 0.805 0.665 0.819 0.894
SQuirrel 0.851 0.671 0.794 0.556 0.681 0.736

Average 0.879 0.719 0.788 0.641 0.725 0.804

Table 7
Recall values of our method and the five baselines in cross-project scenario.
Project GGSATD HATD CNN GCN TLGNN LSTM

Apache Ant 0.818 0.780 0.758 0.573 0.639 0.732
ArgoUML 0.946 0.925 0.950 0.720 0.860 0.942
Columba 0.942 0.956 0.875 0.669 0.877 0.928
EMF 0.786 0.785 0.594 0.561 0.684 0.688
Hibernate 0.894 0.839 0.743 0.747 0.834 0.830
JEdit 0.720 0.713 0.489 0.623 0.588 0.665
JFreeChart 0.753 0.748 0.802 0.617 0.722 0.756
JMeter 0.899 0.871 0.787 0.693 0.842 0.866
JRuby 0.914 0.913 0.930 0.707 0.791 0.889
SQuirrel 0.820 0.851 0.692 0.572 0.736 0.776

Average 0.849 0.838 0.762 0.648 0.757 0.807

Table 8
F1-score values of our method and the five baselines in cross-project scenario.
Project GGSATD HATD CNN GCN TLGNN LSTM

Apache Ant 0.811 0.713 0.660 0.575 0.626 0.713
ArgoUML 0.926 0.855 0.878 0.595 0.839 0.913
Columba 0.939 0.848 0.852 0.697 0.767 0.878
EMF 0.802 0.669 0.679 0.581 0.658 0.690
Hibernate 0.909 0.776 0.826 0.676 0.841 0.857
JEdit 0.782 0.671 0.599 0.612 0.609 0.694
JFreeChart 0.786 0.703 0.739 0.643 0.694 0.754
JMeter 0.902 0.747 0.828 0.683 0.806 0.858
JRuby 0.926 0.798 0.863 0.682 0.803 0.888
SQuirrel 0.834 0.707 0.739 0.562 0.704 0.751

Average 0.862 0.749 0.766 0.630 0.735 0.800

2016), to analyze the significant differences between our GGSATD
method and the five baseline methods. The SKESD test corrects
the dataset of non-normal distribution and merges two groups
with negligible effect size into one group. A method gets the
lower ranking in SKESD test means that it obtains better perfor-
mance. Figs. 6 and 7 visualize the SKESD statistical test results
for our method and the five baseline methods in terms of three
indicators in within-project scenario and cross-project scenario,
respectively. In these two figures, the point represents the mean
value and the line represents the interval of the standard de-
viation. These figures illustrate that our method always ranks
the first and has significant differences compared with the five
baseline methods in terms of all indicators in both scenarios.

It is worth mentioning that, the previous work (Ren et al.,
2019) has confirmed that the CNN model obtained better clas-
sification performance than traditional text mining based and
pattern based methods. From the above analysis, we can find
that our method performs better than the CNN model. Thus,
we can consider that our method can obtain better classification
performance than traditional text mining based and pattern based
methods for identifying SATDs.

Besides, we also perform efficiency analysis and record the
execution time of our method and the state-of-the-art method

J. Yu, K. Zhao, J. Liu et al. The Journal of Systems & Software 187 (2022) 111219

c

5
p

w
p
d
p
p
p
f
f
Z
s
h

t
s
W
i
e
S
g
m
a

Fig. 6. SKESD test results for our method and five baseline methods with three indicators in within-project scenario.
Fig. 7. SKESD test results for our method and five baseline methods with three indicators in cross-project scenario.
a
c
t
s
(
e
m

s
m
s
b
F
m
s
j
o

b
i
o
s
8
G
e
a
2
r

p
p

Table 9
Statistics of 7 extension projects.
Project Release #Comments #SATDs %SATDs

Kafka 2.7.0 23,084 141 0.61%
Logback 1.2.0 5,184 44 0.85%
Mybatis3 3.5.6 3,267 52 1.59%
React 17.0.1 23,657 826 3.49%
Spring 4.3.30 48,532 1,564 3.22%
Tomcat 7.0.x 41,037 903 2.20%
zookeeper 3.5.9 7,808 96 1.23%

Average – – 518 1.89%

HATD. We find that the average time of predicting one comment
instance among all 10 projects by HATD is 1.45 s and 12.45 s
in within- and cross-project scenarios respectively, whereas our
GGSATD model just spends 0.08 s and 2.34 s respectively. This
implies that our model is more efficient than the state-of-the-art
method HATD.

In summary, our method is significantly superior to the five
omparative baseline methods for classifying SATDs.

.3. Answer to RQ3: the performance of our method in real-world
rojects

Methods: To answer this question, we collect seven real-
orld projects from GitHub as follows to evaluate the prediction
erformance of our GGSATD method. Kafka is an open-source
istributed event streaming platform. Logback is a logging com-
onent that intends as a successor to log4j project. Mybatis is a
ersistence framework that supports for customized SQL, stored
rocedures, and advanced mappings. React is a javascript library
or building user interfaces. Spring is an open-source application
ramework based on J2EE. Tomcat is a web application server.
ookeeper is a distributed application service. We select these
even projects because they are the most popular projects and
ave tens of thousands of individual and business users.
We extract the comment instances from the source code of

he seven projects and separately treat each project as the test
et to evaluate our model trained on the existing 10 projects.
e randomly select 50 comment instances for each project and

nvite five programmers with at least three-year development
xperience. We ask them whether the comment instances are
ATDs and use the following two strategies to determine the
round truth: The first one is the majority strategy that means if
ore than three people treat the comment instance as the SATD
nd this comment instance is deemed as the SATD, otherwise,
8

Table 10
The number of SATDs predicted by our method and two manual strategies.
Project GGSATD Majority All-agree

Kafka 13 15 12
Logback 4 6 3
Mybatis3 7 11 6
React 9 12 8
Spring 14 16 13
Tomcat 16 18 15
Zookeeper 15 17 13

non-SATD. The second is the all-agree strategy that means if all
the people treat the comment instance as the SATD and this
comment instance is deemed as the SATD, otherwise, non-SATD.

Results: Table 9 presents the basic statistical information
nd the prediction results of our model. From this table, we
an see that, the average proportion of the comment instances
hat are predicted as SATD by our GGSATD method among the
even projects is 1.89%, which is closer to the average proportion
i.e., 1.86%) in the existing 10 projects provided by Maldonado
t al. (2017) (see Table 1). This result indicates that our GGSATD
ethod is effective when detecting the real-world SATDs.
To confirm the prediction results of our model, we randomly

elect 50 comment instances from each project (totally 350 com-
ent instances), and use the majority strategy and all-agree
trategy to identify SATDs manually. Table 10 presents the num-
er of SATDs predicted by our method and two manual strategies.
rom this table, we can see that, the predicted result of our
ethod is between the results of majority strategy and all-agree
trategy, which means that our method is more rigorous than ma-
ority strategy. In addition, it also reduces the strong absoluteness
f all-agree strategy.
Tables 11 and 12 represent the performance of our model and

aseline methods for identifying SATDs with F1-score indicator
n majority strategy and all-agree strategy, respectively. In terms
f majority strategy, our method achieves the best average F1-
core of 0.911 and obtains the average improvements by 57.02%,
.37%, 26.13%, 20.84%, and 17.19% compared with HATD, CNN,
CN, TLGNN, and LSTM, respectively. In terms of all-agree strat-
gy, our method obtains the best the average F1-score of 0.921
nd achieves average improvements by 66.01%, 13.60%, 29.10%,
6.24%, and 28.79% compared with the five baseline methods,
espectively.

In summary, our proposed GGSATD method obtains better
erformance than the five baseline methods in real-world
rojects.

J. Yu, K. Zhao, J. Liu et al. The Journal of Systems & Software 187 (2022) 111219

p
m
t
m
t
o
s
F

6

f
a
a
r
F
0
s
s

Fig. 8. The error predicted instances in Apache Ant.
e
2
p
t
t
m
t
d

6

i
a
t
S
m
b
t
a
d
t
w
o
c
d
t
s
p
J
s
i
m
t
w
b
w

6

W
a

Table 11
F1-score values of our model and five baselines using majority strategy in 7
extension projects.
Project GGSATD HATD CNN GCN TLGNN LSTM

Kafka 0.950 0.594 0.836 0.721 0.688 0.836
Logback 0.889 0.621 0.847 0.689 0.889 0.647
Mybatis3 0.865 0.592 0.817 0.688 0.847 0.851
React 0.859 0.681 0.781 0.667 0.709 0.822
Spring 0.952 0.458 0.873 0.790 0.844 0.830
Tomcat 0.911 0.464 0.883 0.814 0.653 0.752
Zookeeper 0.954 0.653 0.851 0.690 0.650 0.706

Average 0.911 0.580 0.841 0.723 0.754 0.778

Table 12
F1-score values of our model and five baselines using all strategy in 7 extension
projects.
Project GGSATD HATD CNN GCN TLGNN LSTM

Kafka 0.920 0.569 0.773 0.653 0.610 0.750
Logback 0.923 0.573 0.864 0.548 0.923 0.691
Mybatis3 0.956 0.514 0.752 0.813 0.777 0.625
React 0.838 0.726 0.729 0.653 0.681 0.709
Spring 0.975 0.488 0.867 0.740 0.802 0.792
Tomcat 0.883 0.438 0.830 0.870 0.650 0.671
Zookeeper 0.950 0.577 0.859 0.714 0.661 0.767

Average 0.921 0.555 0.810 0.713 0.729 0.715

6. Discussion

In this section, we first discuss to what extent the different
arameter settings impact our proposed GGSATD method. We
ainly focus on the different learning rates and dimensions of

he word embedding. In this part of the experiments, we only
odify the parameters that need to be discussed while ensuring

hat other parameters remain unchanged, and observe the impact
f those parameters on our method. Then we discuss how some
pecific patterns proposed in Yu et al. (2020) impact our method.
inally, we conduct an error analysis of our experiment results.

.1. The impact of different parameter settings

The impact of different learning rates.We empirically choose
our different learning rates from {0.001, 0.002, 0.005, 0.01}
nd conduct experiments with each setting in within-project
nd cross-project scenarios, respectively. Table 13 presents the
esults on each learning rate (i.e., LR) in terms of three indicators.
rom this table, we can see that, our model with learning rate
.001 obtains better performance with three indicators in both
cenarios except for the Precision indicator in the cross-project
cenario. Thus, lower learning rate will possibly be more suitable
9

for our method. The reason why we do not choose the learning
rate that is less than 0.001 is that the model with very small
learning rate may result in the slower decline of the model loss,
which is time-consuming.

The impact of different word embedding dimensions. We
mpirically choose three word embedding dimensions from {100,
00, 300} and conduct experiments with each setting in within-
roject and cross-project scenarios, respectively. Table 13 presents
he results on each word embedding dimension (i.e., DIM) in
erms of three indicators. From this table, we can see that, our
odel with different dimensions only has slight differences with

hree indicators in the two scenarios. However, our model with
imension 300 seems to be the best choice for detecting SATDs.

.2. The impact of patterns

A previous study (Yu et al., 2020) suggested that comment
nstances containing some specific keywords (i.e., patterns), such
s ‘‘fixme’’, ‘‘todo’’, ‘‘workaround’’, and ‘‘hack’’, are almost related
o SATDs and these comment instances are always treated as
ATDs (Yu et al., 2020). To explore how such patterns impact our
odel, we select JEdit as the example to conduct the experiment
ecause it has worse performance in two scenarios. We extract
he comment instances containing such patterns and treat them
s SATDs. Then, we employ our GGSATDmethod on the remaining
ata to determine which comment instances are SATDs. After
he experiment, we find that, in within-project scenario, when
e discard the comment instances with these patterns, we can
btain the F1-score value of 0.781. However, the F1-score value
an achieve 0.816 if these comment instances are treated SATDs
irectly when calculating the indicator. Meanwhile, the same
rend can be found in the cross-project scenario, i.e., the F1-
core value increases from 0.543 to 0.703. We try to explain such
henomenon as follows. Recall that the proportion of SATDs in
Edit is 1.5%, which is class imbalanced. When the comment in-
tances with such patterns are removed, the data becomes more
mbalanced. As a result, the performance is declined because our
odel does not consider the class imbalance issue and we will

reat this issue as our future work. On the other hand, compared
ith the results in Table 2, we can find that, such patterns just
ring slight impact on the performance of our GGSATD method,
hich implies that our method is insensitive to such patterns.

.3. Error analysis

In this section, we conduct the error analysis of our method.
e select four comment instances from Apache Ant as examples

s shown in Fig. 8. From this figure, we can see that, Examples

J. Yu, K. Zhao, J. Liu et al. The Journal of Systems & Software 187 (2022) 111219

S
i
i
d
c
c
E

E
u
p

7

e
t
t
p
a
t
e
p
o
d
w
d
c
g
a
i
i
p

8

t
s
i
b
t
t
m
t
t
m
p
r
G

e
b

Table 13
Average results for different parameter settings.
Parameters Within Cross

Precision Recall F1-score Precision Recall F1-score

LR

0.001 0.916 0.884 0.895 0.879 0.849 0.862
0.002 0.891 0.821 0.848 0.887 0.804 0.835
0.005 0.907 0.836 0.864 0.891 0.796 0.829
0.01 0.904 0.824 0.855 0.895 0.763 0.797

DIM
100 0.902 0.862 0.880 0.895 0.806 0.838
200 0.900 0.859 0.879 0.875 0.822 0.842
300 0.916 0.884 0.895 0.879 0.849 0.862
1 and 2 are truly SATDs but our method predicts them as non-
ATDs because the semantic description of these two comment
nstances are unobvious. In Example 1, the phrase ‘‘hairy case’’
s a SATD-prone expression and appears only once in the whole
ataset. The phrase ‘‘need to be escaped’’ in Example 2 does not
learly indicate whether the operation is completed and it brings
onfused meanings. Thus, our method cannot predict them better.
xamples 3 and 4 are truly non-SATDs but our method predicts

them as SATDs. The expressions ‘‘XXX ’’, ‘‘version’’ and ‘‘test ’’ in
xample 3, and ‘‘Prune away’’ and ‘‘ugly’’ in Example 4 are always
sed in the SATD-prone comment instances. Thus, our method
redicts them as SATDs.

. Threats to validity

Threats to internal validity are associated with the potential
rrors during our experimental implementation. To relieve these
hreats, we carefully modify the source code of GGNN provided by
he original authors to cater to our task. In addition, all the com-
arative baseline methods are reproduced based on the Python
nd TensorFlow libraries, and the first two authors both check
he implement details for reducing potential errors. Threats to
xternal validity are associated with the generalization of our
roposed GGSATD method. In this work, we conduct experiments
n a publicly available dataset released by the recent study (Mal-
onado et al., 2017) which includes 10 open source projects
ith a total of 62,566 comments. Since all these projects are
eveloped in Java programming language, we ought to collect
omment data from projects developed with other languages to
eneralize our experiment results. Threats to construct validity
re associated with the reasonability of the used performance
ndicators. In this work, we use three widely-used performance
ndicators, i.e., Precision, Recall, and F1-score, to evaluate the
erformance of our proposed GGSATD method.

. Conclusion

In this paper, we propose a novel method, called GGSATD,
o automatically identify the self-admitted technical debts. More
pecifically, GGSATD first constructs the graph for each comment
nstance and the Glove technique is used to initial the word em-
edding vectors. Then, the gated graph neural network is utilized
o iteratively update node representation. Finally, the represen-
ation layer incorporating multi-layer perceptrons and pooling
echanisms are employed to obtain the graph level representa-

ion. The experiments on 10 open-source projects demonstrate
hat our proposed GGSATD method obtains promising perfor-
ance compared with five baseline methods in both within-
roject and cross-project scenarios. In addition, the experimental
esults on seven real-world projects show the effectiveness of our
GSATD method.
In the future, we plan to collect more data to enrich our

xperiments and will take class imbalance issue into account
ecause the existing comment data are internally imbalanced.
10
CRediT authorship contribution statement

Jiaojiao Yu: Writing – original draft, Methodology, Data cu-
ration. Kunsong Zhao: Methodology, Software, Visualization. Jin
Liu: Supervision, Project administration. Xiao Liu: Conceptualiza-
tion, Writing – review & editing. Zhou Xu: Formal analysis. Xin
Wang: Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

This work was supported by the National Natural Science
Foundation of China under Grants (No. 61972290), the National
Natural Science Foundation of China (No. 62102054), and the
Open Foundation of Key Laboratory of Dependable Service Com-
puting in Cyber Physical Society, Ministry of Education of China
(CPSDSC202004).

References

Ampatzoglou, A., Ampatzoglou, A., Chatzigeorgiou, A., Avgeriou, P., 2015. The
financial aspect of managing technical debt: A systematic literature review.
Inf. Softw. Technol. 64, 52–73.

Bahdanau, D., Cho, K., Bengio, Y., 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv:1409.0473.

Bavota, G., Russo, B., 2016. A large-scale empirical study on self-admitted
technical debt. In: Proceedings of the 13th International Conference on
Mining Software Repositories, pp. 315–326.

Cho, K., Van Merriënboer, B., Bahdanau, D., Bengio, Y., 2014. On the properties
of neural machine translation: Encoder-decoder approaches. arXiv preprint
arXiv:1409.1259.

Christlein, V., Spranger, L., Seuret, M., Nicolaou, A., Král, P., Maier, A., 2019. Deep
generalized max pooling. In: 2019 International Conference on Document
Analysis and Recognition (ICDAR). IEEE, pp. 1090–1096.

Cohen, J., 1968. Weighted kappa: nominal scale agreement provision for scaled
disagreement or partial credit. Psychol. Bull. 70 (4), 213.

Cunningham, W., 1992. The WyCash portfolio management system. ACM
SIGPLAN OOPS Messenger 4 (2), 29–30.

De Freitas Farias, M.A., de Mendonça Neto, M.G., da Silva, A.B., Spínola, R.O.,
2015. A contextualized vocabulary model for identifying technical debt on
code comments. In: 2015 IEEE 7th International Workshop on Managing
Technical Debt (MTD). IEEE, pp. 25–32.

Efron, B., 1983. Estimating the error rate of a prediction rule: improvement on
cross-validation. J. Am. Statist. Assoc. 78 (382), 316–331.

Fan, W., Ma, Y., Li, Q., He, Y., Zhao, E., Tang, J., Yin, D., 2019. Graph neural
networks for social recommendation. In: The World Wide Web Conference,
pp. 417–426.

Flisar, J., Podgorelec, V., 2019. Identification of self-admitted technical debt
using enhanced feature selection based on word embedding. IEEE Access
7, 106475–106494.

Foucault, M., Blanc, X., Storey, M.-A., Falleri, J.-R., Teyton, C., 2018. Gamification:
a game changer for managing technical debt? a design study. arXiv preprint
arXiv:1802.02693.

Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E., 2020. Message
passing neural networks. In: Machine Learning Meets Quantum Physics.
Springer, pp. 199–214.

http://refhub.elsevier.com/S0164-1212(22)00003-6/sb1
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb1
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb1
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb1
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb1
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.1259
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb5
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb5
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb5
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb5
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb5
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb6
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb6
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb6
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb7
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb7
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb7
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb8
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb8
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb8
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb8
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb8
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb8
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb8
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb9
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb9
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb9
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb11
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb11
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb11
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb11
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb11
http://arxiv.org/abs/1802.02693
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb13
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb13
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb13
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb13
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb13

J. Yu, K. Zhao, J. Liu et al. The Journal of Systems & Software 187 (2022) 111219

H

H

H

H

I

I

K

K

L

L

L

L

L

M

M

M

M

M

M

M

P

P

P

P

P
P

R

e, K., Zhu, M., 2019. Text classification using gated and transposed attention
networks. In: 2019 International Joint Conference on Neural Networks
(IJCNN). IEEE, pp. 1–7.

u, J., Liao, J., Liu, L., Ma, W., 2020. RCapsNet: A recurrent capsule network
for text classification. In: 2020 International Joint Conference on Neural
Networks (IJCNN). IEEE, pp. 1–8.

uang, L., Ma, D., Li, S., Zhang, X., Wang, H., 2019. Text level graph neural
network for text classification. arXiv preprint arXiv:1910.02356.

uang, Q., Shihab, E., Xia, X., Lo, D., Li, S., 2018. Identifying self-admitted
technical debt in open source projects using text mining. Empir. Softw. Eng.
23 (1), 418–451.

slam, M.R., Muthiah, S., Ramakrishnan, N., 2019. NActSeer: Predicting user
actions in social network using graph augmented neural network. In:
Proceedings of the 28th ACM International Conference on Information and
Knowledge Management, pp. 1793–1802.

zurieta, C., Ozkaya, I., Seaman, C., Snipes, W., 2017. Technical debt: A research
roadmap report on the eighth workshop on managing technical debt. ACM
SIGSOFT Softw. Eng. Notes 42 (1), 28–31.

oncel-Kedziorski, R., Bekal, D., Luan, Y., Lapata, M., Hajishirzi, H., 2019. Text
generation from knowledge graphs with graph transformers. arXiv preprint
arXiv:1904.02342.

ruchten, P., Nord, R.L., Ozkaya, I., 2012. Technical debt: From metaphor to
theory and practice. Ieee Softw. 29 (6), 18–21.

i, Z., Avgeriou, P., Liang, P., 2015a. A systematic mapping study on technical
debt and its management. J. Syst. Softw. 101, 193–220.

i, Z., Liang, P., Avgeriou, P., 2015b. Architectural technical debt identification
based on architecture decisions and change scenarios. In: Proceedings of
the 12th Working IEEE/IFIP Conference on Software Architecture. IEEE, pp.
65–74.

i, Y., Tarlow, D., Brockschmidt, M., Zemel, R., 2015c. Gated graph sequence
neural networks. arXiv preprint arXiv:1511.05493.

im, E., Taksande, N., Seaman, C., 2012. A balancing act: What software
practitioners have to say about technical debt. IEEE Softw. 29 (6), 22–27.

iu, Z., Huang, Q., Xia, X., Shihab, E., Lo, D., Li, S., SATD detector: A text-mining-
based self-admitted technical debt detection tool.(2018). In: Proceedings of
the 40th ACM/IEEE International Conference on Software Engineering (ICSE),
Vol. 3, pp. 9–12.

a, Q., Yuan, C., Zhou, W., Hu, S., 2021. Label-specific dual graph neural network
for multi-label text classification. In: Proceedings of the 59th Annual Meeting
of the Association for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing (Volume 1: Long Papers),
pp. 3855–3864.

aldonado, E.d.S., Shihab, E., 2015. Detecting and quantifying different types of
self-admitted technical debt. In: Proceedings of the 7th IEEE International
Workshop on Managing Technical Debt. IEEE, pp. 9–15.

aldonado, E., Shihab, E., Tsantalis, N., 2017. Using natural language processing
to automatically detect self-admitted technical debt. IEEE Trans. Softw. Eng.
43 (11), 1044–1062.

arinescu, R., 2004. Detection strategies: Metrics-based rules for detecting
design flaws. In: Proceedings of the 20th IEEE International Conference on
Software Maintenance, 2004. Proceedings. IEEE, pp. 350–359.

ensah, S., Keung, J., Bosu, M.F., Bennin, K.E., 2016. Rework effort estimation of
self-admitted technical debt.

ittal, V., Gangodkar, D., Pant, B., 2021. Deep graph-long short-term memory:
A deep learning based approach for text classification. Wirel. Pers. Commun.
1–15.

iyake, Y., Amasaki, S., Aman, H., Yokogawa, T., 2017. A replicated study
on relationship between code quality and method comments. In: Applied
Computing and Information Technology. Springer, pp. 17–30.

al, A., Selvakumar, M., Sankarasubbu, M., 2020. Magnet: Multi-label text
classification using attention-based graph neural network. In: ICAART (2).
pp. 494–505.

ark, N., Kan, A., Dong, X.L., Zhao, T., Faloutsos, C., 2019. Estimating node im-
portance in knowledge graphs using graph neural networks. In: Proceedings
of the 25th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, pp. 596–606.

eng, H., Li, J., He, Y., Liu, Y., Bao, M., Wang, L., Song, Y., Yang, Q., 2018.
Large-scale hierarchical text classification with recursively regularized deep
graph-cnn. In: Proceedings of The 27th World Wide Web Conference, pp.
1063–1072.

ennington, J., Socher, R., Manning, C.D., 2014. Glove: Global vectors for word
representation. In: Proceedings of the 19th Conference on Empirical Methods
in Natural Language Processing (EMNLP), pp. 1532–1543.

oint, A.T., from Dagstuhl, R., Perspectives on Managing Technical Debt.
otdar, A., Shihab, E., 2014. An exploratory study on self-admitted technical

debt. In: Proceedings of the 30th IEEE International Conference on Software
Maintenance and Evolution (ICSME). IEEE, pp. 91–100.

en, X., Xing, Z., Xia, X., Lo, D., Wang, X., Grundy, J., 2019. Neural network-
based detection of self-admitted technical debt: From performance to
explainability. ACM Trans. Softw. Eng. Methodol. 28 (3), 1–45.
11
Sachan, D.S., Zaheer, M., Salakhutdinov, R., (2019). Revisiting lstm networks
for semi-supervised text classification via mixed objective function. In:
Proceedings of The AAAI Conference on Artificial Intelligence, Vol. 33 (01)
pp. 6940–6948.

Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G., 2008. The
graph neural network model. IEEE Trans. Neural Netw. 20 (1), 61–80.

Sierra, G., Shihab, E., Kamei, Y., 2019. A survey of self-admitted technical debt.
J. Syst. Softw. 152, 70–82.

Silva, F., 1997. Bridging long time lags by weight guessing and ‘‘long short term
memory’’. Spatiotemporal Models Biol. Artif. Syst. 37, 65.

Tantithamthavorn, C., McIntosh, S., Hassan, A.E., Matsumoto, K., 2016. An
empirical comparison of model validation techniques for defect prediction
models. IEEE Trans. Softw. Eng. 43 (1), 1–18.

Tom, E., Aurum, A., Vidgen, R., 2013. An exploration of technical debt. J. Syst.
Softw. 86 (6), 1498–1516.

Valdivia Garcia, H., Shihab, E., 2014. Characterizing and predicting blocking bugs
in open source projects. In: Proceedings of the 11th Working Conference on
Mining Software Repositories, pp. 72–81.

Wang, X., Liu, J., Li, L., Chen, X., Liu, X., Wu, H., 2020. Detecting and explaining
self-admitted technical debts with attention-based neural networks. In:
Proceedings of The 35th IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, pp. 871–882.

Wang, J., Ma, A., Chang, Y., Gong, J., Jiang, Y., Qi, R., Wang, C., Fu, H., Ma, Q., Xu, D.,
2021. ScGNN is a novel graph neural network framework for single-cell
RNA-seq analyses. Nature Commun. 12 (1), 1–11.

Wattanakriengkrai, S., Maipradit, R., Hata, H., Choetkiertikul, M., Sunetnanta, T.,
Matsumoto, K., 2018. Identifying design and requirement self-admitted
technical debt using n-gram idf. In: 2018 9th International Workshop on
Empirical Software Engineering in Practice (IWESEP). IEEE, pp. 7–12.

Wehaibi, S., Shihab, E., Guerrouj, L., 2016. Examining the impact of self-
admitted technical debt on software quality. In: Proceedings of the 23rd IEEE
International Conference on Software Analysis, Evolution, and Reengineering
(SANER). 1, IEEE, pp. 179–188.

Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Philip, S.Y., 2020. A comprehensive
survey on graph neural networks. IEEE Trans. Neural Netw. Learn. Syst. 32
(1), 4–24.

Wu, F., Souza, A., Zhang, T., Fifty, C., Yu, T., Weinberger, K., 2019a. Simplifying
graph convolutional networks. In: International Conference on Machine
Learning. PMLR, pp. 6861–6871.

Wu, S., Tang, Y., Zhu, Y., Wang, L., Xie, X., Tan, T., 2019b. Session-based
recommendation with graph neural networks. In: Proceedings of the AAAI
Conference on Artificial Intelligence, Vol. 33 (01) pp. 346–353.

Xia, X., Lo, D., Shihab, E., Wang, X., Yang, X., 2015. Elblocker: Predicting blocking
bugs with ensemble imbalance learning. Inf. Softw. Technol. 61, 93–106.

Xu, Z., Li, S., Xu, J., Liu, J., Luo, X., Zhang, Y., Zhang, T., Keung, J., Tang, Y., 2019.
LDFR: Learning deep feature representation for software defect prediction. J.
Syst. Softw. 158, 110402.

Xu, Z., Zhao, K., Yan, M., Yuan, P., Xu, L., Lei, Y., Zhang, X., 2020. Imbalanced
metric learning for crashing fault residence prediction. J. Syst. Softw. 170,
110763.

Xuan, J., Hu, Y., Jiang, H., 2017. Debt-prone bugs: technical debt in software
maintenance. arXiv preprint arXiv:1704.04766.

Yan, M., Xia, X., Shihab, E., Lo, D., Yin, J., Yang, X., 2018. Automating change-level
self-admitted technical debt determination. IEEE Trans. Softw. Eng. 45 (12),
1211–1229.

Yang, Q., Ji, H., Lu, H., Zhang, Z., 2021. Prediction of liquid chromatographic
retention time with graph neural networks to assist in small molecule
identification. Anal. Chem. 93 (4), 2200–2206.

Yao, L., Mao, C., Luo, Y., 2019. Graph convolutional networks for text classifica-
tion. In: Proceedings of the 34th AAAI Conference on Artificial Intelligence,
Vol. 33 (01) pp. 7370–7377.

Yin, R., Li, K., Zhang, G., Lu, J., 2019. A deeper graph neural network for
recommender systems. Knowl.-Based Syst. 185, 105020.

Yu, Z., Fahid, F.M., Tu, H., Menzies, T., 2020. Identifying self-admitted technical
debts with jitterbug: A two-step approach. IEEE Trans. Softw. Eng..

Yu, D., Wang, H., Chen, P., Wei, Z., 2014. Mixed pooling for convolutional
neural networks. In: International Conference on Rough Sets and Knowledge
Technology. Springer, pp. 364–375.

Zampetti, F., Noiseux, C., Antoniol, G., Khomh, F., Di Penta, M., 2017. Recommend-
ing when design technical debt should be self-admitted. In: Proceedings of
The 33th 2017 IEEE International Conference on Software Maintenance and
Evolution (ICSME). IEEE, pp. 216–226.

Zazworka, N., Spínola, R.O., Vetro’, A., Shull, F., Seaman, C., 2013. A case study
on effectively identifying technical debt. In: Proceedings of the 17th Inter-
national Conference on Evaluation and Assessment in Software Engineering,
pp. 42–47.

Zhang, Y., Yu, X., Cui, Z., Wu, S., Wen, Z., Wang, L., 2020. Every document owns
its structure: Inductive text classification via graph neural networks. arXiv
preprint arXiv:2004.13826.

http://refhub.elsevier.com/S0164-1212(22)00003-6/sb14
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb14
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb14
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb14
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb14
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb15
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb15
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb15
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb15
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb15
http://arxiv.org/abs/1910.02356
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb17
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb17
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb17
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb17
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb17
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb19
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb19
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb19
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb19
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb19
http://arxiv.org/abs/1904.02342
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb21
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb21
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb21
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb22
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb22
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb22
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb23
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb23
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb23
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb23
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb23
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb23
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb23
http://arxiv.org/abs/1511.05493
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb25
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb25
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb25
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb28
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb28
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb28
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb28
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb28
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb29
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb29
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb29
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb29
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb29
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb30
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb30
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb30
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb30
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb30
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb31
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb31
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb31
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb32
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb32
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb32
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb32
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb32
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb33
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb33
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb33
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb33
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb33
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb34
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb34
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb34
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb34
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb34
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb39
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb39
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb39
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb39
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb39
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb40
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb40
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb40
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb40
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb40
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb42
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb42
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb42
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb43
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb43
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb43
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb44
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb44
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb44
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb45
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb45
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb45
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb45
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb45
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb46
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb46
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb46
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb48
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb48
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb48
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb48
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb48
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb48
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb48
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb49
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb49
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb49
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb49
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb49
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb50
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb50
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb50
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb50
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb50
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb50
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb50
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb51
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb51
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb51
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb51
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb51
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb51
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb51
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb52
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb52
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb52
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb52
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb52
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb53
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb53
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb53
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb53
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb53
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb55
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb55
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb55
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb56
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb56
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb56
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb56
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb56
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb57
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb57
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb57
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb57
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb57
http://arxiv.org/abs/1704.04766
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb59
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb59
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb59
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb59
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb59
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb60
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb60
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb60
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb60
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb60
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb62
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb62
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb62
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb63
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb63
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb63
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb64
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb64
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb64
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb64
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb64
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb65
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb65
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb65
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb65
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb65
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb65
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb65
http://arxiv.org/abs/2004.13826

J. Yu, K. Zhao, J. Liu et al. The Journal of Systems & Software 187 (2022) 111219

Z

Z

Z

J
W
l

K
W
a
i

J
n
r
m

hao, K., Liu, J., Xu, Z., Li, L., Yan, M., Yu, J., Zhou, Y., 2021a. Predicting crash
fault residence via simplified deep forest based on a reduced feature set.
arXiv preprint arXiv:2104.01768.

hao, K., Xu, Z., Yan, M., Zhang, T., Yang, D., Li, W., 2021b. A comprehensive
investigation of the impact of feature selection techniques on crashing fault
residence prediction models. Inf. Softw. Technol. 106652.

hao, K., Xu, Z., Zhang, T., Tang, Y., Yan, M., 2021c. Simplified deep forest model
based just-in-time defect prediction for android mobile apps. IEEE Trans.
Reliab..

iaojiao Yu is currently a Ph.D. student at the School of Computer Science,
uhan University. Her research interest includes software engineering, deep

earning, and natural language processing.

unsong Zhao is currently a master student at the School of Computer Science,
uhan University. He received the B.S. degree at School of Computer Science

nd Information Engineering, Hubei University in 2019. His research interest
ncludes software engineering, deep learning, and natural language processing.

in Liu received his Ph.D. degree from Wuhan University, China, in 2005. He is
ow a full professor in School of Computer Science, Wuhan University. His main
esearch interests include machine learning and data mining. He has published
ore than 60 papers in well-known conferences and journals.
12
Xiao Liu received his Ph.D. degree in computer science and software engineering
from the Faculty of Information and Communication Technologies, Swinburne
University of Technology, Melbourne, Australia, in 2011. He was an associate
professor at the Software Engineering Institute, East China Normal University,
Shanghai, China during 2013 to 2015. He is currently an associate professor
with the School of Information Technology, Deakin University, Melbourne. His
research interests include workflow systems, cloud and edge computing, big data
analytics, and human-centric software engineering.

Zhou Xu is an assistant professor in the School of Big Data and Software
Engineering at Chongqing University, China. He received two Ph.D. degrees from
Wuhan University (Wuhan, China) and The Hong Kong Polytechnic University
(Hong Kong, China) in 2019 and 2021, respectively. His research interests include
software defect prediction, empirical software engineering, feature engineering,
and data mining.

Xin Wang received the M.S. degree in computer technology from Yunnan
University in 2019. He is currently a Ph.D. candidate in computer science at
Wuhan University. He has co-authored more than 10 papers, and published in
top venues such as ASE, ICWS, WWWJ. His current research interests mainly
include service computing, software engineering and recommender systems.

http://arxiv.org/abs/2104.01768
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb69
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb69
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb69
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb69
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb69
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb70
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb70
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb70
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb70
http://refhub.elsevier.com/S0164-1212(22)00003-6/sb70

	Exploiting gated graph neural network for detecting and explaining self-admitted technical debts
	Introduction
	Background and related work
	The characteristics of SATDs
	Identifying self-admitted technical debt
	Graph neural network

	Method
	Overview
	Build document graph
	Graph-gated neural network
	Representation layout

	Experimental setup
	Research questions
	Dataset
	Parameter settings
	Performance indicators

	Results
	Answer to RQ1: the effectiveness of our proposed GGSATD method for SATD classification
	Answer to RQ2: the performance of our method compared to other existing methods
	Answer to RQ3: the performance of our method in real-world projects

	Discussion
	The impact of different parameter settings
	The impact of patterns
	Error analysis

	Threats to validity
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References

