
Information and Software Technology 158 (2023) 107190

A
0

D
n
J
a

b

c

d

A

K
T
S
G
C
M

1

i
w
s
c
d
w
a
v
i
b
n
i
t
r

h
R

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

etecting multi-type self-admitted technical debt with generative adversarial
etwork-based neural networks
iaojiao Yu a, Xu Zhou b, Xiao Liu c, Jin Liu a,∗, Zhiwen Xie a, Kunsong Zhao d

School of Computer Science, Wuhan university, Wuhan, China
Wuhan United-Imaging Medical Technology Co., LTD, Wuhan, China
School of Information Technology, Deakin University, Geelong, Australia
Department of Computing, The Hong Kong Polytechnic University, Hong Kong, China

R T I C L E I N F O

eywords:
echnical debt
ATD
enerative adversarial network
odeBERT
ulti-head attention

A B S T R A C T

Context: Developers often introduce the self-admitted technical debt (SATD), i.e., a compromised solution to
satisfy the delivery of the current goals, in code comments but do not eliminate them timely in the following
software development and maintenance process. Automatically identifying the SATDs to reduce potential harm
to software has attracted the attention of researchers. However, existing approaches only identified SATDs at
a coarse-grained level, which impacts developers to locate and remove them.
Objective: This paper proposes a novel model named GCF, which is a deep learning method to enhance the
performance of multi-type SATD classification based on generative adversarial network. Method: The GCF
model employs the JSD Generative Adversarial Network to solve the imbalance problem, utilizes CodeBERT
to fuse information of code snippets and natural language for initializing the instances as embedding vectors,
and introduces the feature extraction module to extract the instance features more comprehensively.
Results: The experimental results show that, the GCF model obtains better performance compared with the
state-of-the-art method. Moreover, experiments on the GCF model variants and others with different GAN
models show the superiority of the GCF model.
Conclusion: Our proposed GCF model effectively solves the problem of imbalanced types of SATD, fuses
the information of code snippets and natural language, and extracts key features to achieve outstanding
performance in detecting multi-type SATD. Therefore, the GCF model is an effective method for detecting
multi-type SATD.
. Introduction

Software projects often face unavoidable issues such as quality
mprovement, delivery time reduction, and budget cut [1]. When faced
ith these issues, software developers often need to choose limited

olutions to satisfy the current software development goals, namely
reating technical debt [2]. However, developers introduce technical
ebts unintentionally or intentionally. For example, a developer sets a
rong parameter because he or she is not fully familiar with the new
rchitecture, which will cause a bug in the system. In that case, the de-
eloper introduces an unintentional debt. Moreover, unintentional debt
s difficult to be traced. A developer applies the framework function,
ut this function has a defect in the design of the framework, which has
ot been fixed yet. Thus, he or she has documented where the function
s used. When the framework is updated, the developer can modify
he code according to the documentation to eliminate the potential
isk of a defective function. In this scenario, the developer introduces

∗ Corresponding author.
E-mail address: jinliu@whu.edu.cn (J. Liu).

an intentional debt. This debt can be eliminated at the later software
maintenance stage by finding the relevant documented content [3].
In particular, we denote the intentionally introduced and documented
debt as self-admitted technical debt (SATD) [4].

Whether the debt is unintentional or intentional, the technical debt
had a negative impact on the maintenance of software for a long
time [5–9]. However, previous studies [10] have shown that technical
debt is inevitable and widespread in software development. Therefore,
it is essential to invent automatic methods to detect technical debt and
help developers have a better understanding of it so that they can fix it
as quickly as possible [11]. Furthermore, it has the correct path to trace
the debt as the developers mark it in the code comments [12]. Thus,
it is also treated as a text classification task to identify SATD in code
comments. In recent years, deep learning methods have been widely
utilized in text classification tasks [13–15] as they can use semantic
information and link contexts for efficient text category identification.
vailable online 6 March 2023
950-5849/© 2023 Elsevier B.V. All rights reserved.

ttps://doi.org/10.1016/j.infsof.2023.107190
eceived 29 August 2022; Received in revised form 27 February 2023; Accepted 1
 March 2023

https://www.elsevier.com/locate/infsof
http://www.elsevier.com/locate/infsof
mailto:jinliu@whu.edu.cn
https://doi.org/10.1016/j.infsof.2023.107190
https://doi.org/10.1016/j.infsof.2023.107190
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2023.107190&domain=pdf

Information and Software Technology 158 (2023) 107190J. Yu et al.
Fig. 1. The code comment contains implementation debt in the ArgoUML project.

Therefore, applying the deep learning method is suitable for identifying
SATD.

Ren et al. [16] proposed a convolutional neural network-based
approach for classifying code comments as SATD or non-SATD. Their
experimental results on 10 projects showed that their method obtained
better performance than the state-of-the-art text mining-based SATD
classification methods. Wang et al. [17] proposed a HATD method
for classifying code comments as SATD or non-SATD, which utilized
the Embeddings from Language Models (ELMO) [18] to get the word
embedding. The attention mechanism was used to obtain the potential
representation of the word, and then they used the sigmoid function
to identify SATD. Their experimental results on 20 projects showed
that their method could effectively identify SATD in both within-project
and cross-project scenarios. In addition, Chen et al. [19] proposed the
first method to perform the three classifications and obtain state-of-the-
art performance in the multi-type SATD classification task (i.e., defect
debt, design debt, and implementation debt). They employed the chi-
square to select the features and eXtreme Gradient Boosting (XGBoost)
to detect multi-types of SATDs.

1.1. Motivation

However, existing methods have the following limitations in identi-
fying multi-types of SATDs. First, existing researches lack more detailed
classification for SATD types (i.e., defect debt, design debt, and imple-
mentation debt). The previous studies mainly focused on identifying
whether the comments contain SATD or not [20]. However, identifying
specific types of SATD is a fundamental task that can help developers
better understand technical debt [19] and guide developers to eliminate
such SATD. As shown in Fig. 1, an implementation debt may need to
be fixed after confirming with the project product-related personnel.
Therefore, we need to focus on the identification of multi-types of
SATDs.

Second, existing researches lack the use of semantic information
as well as word order that SATD contains, and cannot expand the
diversity of samples to balance data. Previous work [19] employed the
traditional feature extraction methods to choose the key features that
consider word frequency information, but lose a lot of semantics and
word orders [21–23]. Moreover, the two methods used to deal with the
imbalance SATD categories were the weighted cross-entropy loss and
the traditional data augmentation method in previous studies [16,19].
However, these methods cannot expand the diversity of few number
samples to balance data. Therefore, we need to make full use of the
semantic information contained in SATD to obtain effective features in
detecting multi-types of SATDs. In addition, we need to expand the
diversity of samples to enhance the features containing few number
data, so as to improve the performance of few number data.

Third, existing researches lack the fusion of the features of code
snippets. SATD is represented by code comments composed of code
snippets and natural language sequences, between which the semantics
are different. Previous studies [16,17,24] regarded code comments as
natural language sequences for modeling, but SATD contains not only
natural language sequences, but also code snippets. Therefore, we need
to integrate the feature of the code snippets and natural language
2

sequences to enhance the performance of the model.
1.2. Our work

To overcome these problems, we propose a neural network model
based on a generative adversarial network for detecting multi-types of
SATDs. Specifically, we employ the Jensen–Shannon divergence Gener-
ative Adversarial Network (JSD-GAN) model [25] to balance the data,
then we convert the instance to an embedding vector by CodeBERT
model [26] which can fuse the information of code snippets and natural
language. After that, we utilize the feature extraction module to extract
the features of word embedding. Finally, we apply the softmax function
to detect multi-types of SATDs in code comments containing SATD.

We conduct comprehensive experiments on a benchmark dataset
that includes 10 open-source projects by previous work [27]. To eval-
uate the performance of our model in detecting multi-types of SATDs,
we employ three indicators, including Precision, Recall, and F-score.
Compared with the baseline methods, our model obtains better average
performance in terms of Precision, Recall, and F-score, which are
0.6369, 0.5874, and 0.5866, respectively.

1.3. Contributions

The major contributions of this paper are summarized as follows:

• We propose a Generative Adversarial Network-based neural net-
works, named GCF model, to detect multi-types of SATDs. The
GCF model consists of three parts: JSD-GAN, embedding vec-
tor, and feature extraction module. The trained GCF model can
classify SATD and obtain more detailed categories.

• We employ the GAN to deal with the problem of data imbal-
ance, which can effectively expand the diversity of instances and
enhance the representation of features.

• We conduct comprehensive experiments to evaluate the perfor-
mance of the GCF model and compare with the state-of-the-art
(SOTA) method on public datasets. The results show that our
method performs better than the SOTA method.

1.4. Paper organization

The remainder of this paper is organized as follows. Section 2 pro-
vides the related work. Our model is introduced in detail in Section 3.
Sections 4 and 5 describe the experimental setup and analyze the
experimental results, respectively. We discuss the parameter impacts
and error analysis in Section 6. Section 7 clarifies the threats to validity.
Finally, we draw the conclusion in Section 8.

2. Related work

2.1. SATD identification

There are currently three practical methods for SATD identification
tasks, including pattern-based method, machine and deep learning
method, and change-level method.

The first method is based on pattern recognition. de Freitas Farias
et al. [28] proposed a contextualized vocabulary model that ranked the
patterns that belonged to the vocabulary to determine the degree of
determination of the patterns in SATD, and established the relationship
between debt patterns and debt types, for identifying SATD. Guo et al.
[29] introduced a match task annotation tags (MAT) method that
obtained a task annotation tags list and employed the fuzzy matching
mechanism with task annotation tags list to identify SATD in code com-
ments. Huang et al. [10] proposed an automated text-mining method
that utilized feature selection to select useful features, and constructed
a composite classifier by combining multiple classifiers from different
source projects to identify SATD in code comments. Liu et al. [30]
introduced a SATD detector tool of the Integrated Development Envi-
ronment (IDE) that employed Information Gain (IG) to select the key

Information and Software Technology 158 (2023) 107190J. Yu et al.
feature, trained the sub-classifier by Naive Bayes Multinomial (NBM),
built a composite classifier from all the sub-classifier to identify SATD
in code comments.

The second method is based on machine learning and deep learning
methods. Yu et al. [31] proposed a Jitterbug framework that used a
fixed pattern to identify the ‘‘easy to find’’ SATDs, and utilized machine
learning techniques to assist human experts in identifying ‘‘hard to
find’’ SATDs. Yu et al. [32] introduced a deep learning method that
employed Bidirectional Long Short Term Memory (BiLSTM) networks
with the attention mechanism to capture the key features, utilized
the balanced cross entropy loss function to overcome the unbalance
problem, and trained the classifier to identify SATD. Wattanakriengkrai
et al. [33] introduced an automated model that applied N-gram Inverse
Document Frequency (IDF) to select the key features, and employed the
auto-sklearn tool to find the best classifier and hyper-parameters, for
identifying SATD.

The third method is based on the change-level document. Yan et al.
[34] proposed a change-level SATD method, which identified SATD
from source code comments of all versions of source code files. Then,
they marked changes that first introduced SATD comments as changes
that introduced technical debt. Next, they extracted 25 features from
software changes and classified them into three dimensions: diffusion,
history, and information, to build a determination model. They con-
ducted experiments on 7 open source projects with 100, 011 software
changes. The results showed that the model achieved a better perfor-
mance than the baseline method in terms of AUC and cost-effectiveness.
The diffusion was the most discriminative dimension among the three
feature dimensions in determining technical debt-introduced changes.

Traditional pattern-based SATD recognition is based on massive
manual work, and the results are marked with significantly biased
personal information. Improved text mining-based methods are based
on feature engineering techniques to extract relevant features, and this
technique is highly dependent on expert effort. The quality of features
severely affects classification performance. Machine learning and deep
learning methods are mainly performed in the binary classification
of SATD. Moreover, existing methods adopt for data imbalance on
cross-entropy functions to increase weights or through traditional data
augmentation, which does not expand the diversity of the dataset and
enhance features. The change-level SATD requires many document
versions for information collection.

Therefore, our proposed model utilizes the JSD-GAN to solve the
data imbalance problem. Our model can effectively expand the di-
versity of instances and retain the semantic connection of instances,
enhancing the features. The feature extraction module effectively fuses
the sequence information in the word embedding and can better extract
the feature and semantic information between instances.

2.2. Generative adversarial networks

As our model uses generative adversarial networks, we also give
an introduction about these studies. Goodfellow et al. [35] proposed
the generative adversarial network model firstly, which included the
generative and the discriminative models. The optimal generative mode
can deceive the discriminative model with the synthetic samples, and
the optimal discriminative model is distinguishable between synthetic
and true samples. Arjovsky et al. [36] proposed a WGAN framework
that replaced the JSD on the standard GAN framework with the Wasser-
stein Distance, and used the estimated difference measure from the
discriminator to calculate the importance of the generated samples,
thus providing a policy gradient for training the generator. Wang et al.
[37] proposed an E-GANs framework that used pre-defined adversarial
objective functions to train generators and discriminators alternately,
and employed an evaluation mechanism to measure the quality and
diversity of the generated samples so that only high-performance gen-
erators were retained and used for further training. Guo et al. [38]
3

introduced a LeakGAN model that leaked the high-level extracted
Fig. 2. Overview of our GCF model.

features to generators by discriminator, incorporated the information in
generators, applied the extracted features of current generated words,
and outputted a latent vector to guide the module for next word
generation.

We use JSD-GAN [25], which replaces the discriminator in the
standard GAN model with a closed form solution, which directly op-
timizes the model distribution and the empirical distribution of the
training data. Thus, the minimax optimization procedure of JSD-GAN
is implicitly performed for the generator and discriminator. Hence,
it becomes computationally tractable to optimize the JSD to train
generators that generate discrete data sequences.

3. Proposed method

3.1. Framework overview

Fig. 2 presents an overview of our proposed GCF model that consists
of the following steps. First, we augment the comment by generating
synthetic comments for the categories that only contain a few instances.
Such an operation can relieve the imbalance issue and make the model
more robust. To better represent each instance, we adopt the CodeBERT
model to obtain the initialization embedding vectors because comment
instances include some code snippets, and such model considers the
code information. We then propose a feature extraction layer incorpo-
rating a global feature encoder with a key feature extraction to extract
information from the embedding vector. The learned representations
are passed into a fully connected layer, and followed by a softmax
function to identify specific types of SATD. Below, we detail each

component of our GCF model.

Information and Software Technology 158 (2023) 107190J. Yu et al.

f

𝐿

w
s
𝑚
t
o
i
t
t
t
t
p
c
d
t
g
g
w
a
a
t
𝐶
S
t
t
d
p
f

3

i
c
T
w
t
B
l
d
m
s
t

3.2. Data enhancement

Since the SATD comments are extraordinarily imbalanced [27],
such an issue makes the feature learning for the minority instances
(such as defect debt, design debt, and implementation debt) difficult
and deteriorates the classification performance. To deal with this prob-
lem, we want to adopt data augmentation techniques to supplement
the instances in minority categories. Traditional data augmentation
techniques can resolve the imbalance categories, such as over-sampling
and under-sampling . Over-sampling replicates the instances and does
not expand the diversity of the instances, while under-sampling selects
a portion of the instances that reduces the number of instances [39–43].
Consequently, traditional data augmentation methods cannot effec-
tively enhance the features of the instance. A more helpful technique,
i.e., Easy Data Augmentation (EDA), has been widely used in recent
studies to generate synthetic data from original data [44]. EDA contains
four tricks, including synonym replacement (SR), random insertion
(RI), random swap (RS), and random deletion (RD) [44,45]. However,
this technique has the following limitations: the generated synthetic
data by SR and the original data can be considered the same, and
there are no valid extended data in practice; RI makes the original data
lose its semantic structure and semantic order; RS does not essentially
change the vocabulary components of the original data; RD leads to
data missing key features and reducing the correctness of the class
labels. As an optimal solution, Generative Adversarial Network (GAN)
has been widely used in many textual generation tasks [46–48]. Unlike
traditional data augmentation techniques, GAN makes the generated
data closer to the original data by preserving the semantic information
of seed data. Our work use the JSD-GAN technique [25] for data
augmentation.

The standard GAN model comprises a generator (denoted as 𝐺) and
a discriminator (denoted as 𝐷). The goal of 𝐺 is to generate synthetic
data to deceive the discriminator 𝐷. The goal of 𝐷 is to distinguish the
data generated by 𝐺 and the real data. Thus, 𝐺 and 𝐷 can be treated
as a dynamic game process. Ideally, 𝐺 can generate synthetic instances
that look like the real data and make it difficult for 𝐷 to recognize. We
consider that the generator 𝐺 generates suitable instances in this case.
This optimization process can be formalized as follows.

𝑚𝑖𝑛𝐺𝑚𝑎𝑥𝐷𝐿(𝐷,𝐺) = 𝐸𝑎 𝑝̃𝑜(𝑎)[𝑙𝑜𝑔(𝐷(𝑎))]

+ 𝐸𝑏 𝑝̃𝑔 (𝑏)[𝑙𝑜𝑔(1 −𝐷(𝑏))]
(1)

where 𝑎 is the seed data and 𝑏 is the generated data; 𝐷(∗) denotes the
probability of 𝐷 that determines whether one instance is original or
generative data, 𝑝̃𝑜 denotes as the empirical distribution, 𝑝̃𝑔 denotes as
the generative distribution.

However, the standard GAN has low performance in generating
discrete data sequences because the output of the standard generator
is discrete, and difficult to pass the gradient that updates from the
discriminator to the generator [49,50]. Moreover, the standard GAN
has a potential risk that is the disappearance of the gradient derived
from the 𝐺 in the optimal process by using neural networks as discrim-
inators [25], and express unstable behaviors in practice [51,52]. Hence,
we only use the neural network as the generator and adopt the closed
solution as the optimal solution for the discriminator, the formula is as
follows,

𝑚𝑎𝑥𝐷(𝑥) =

⎧

⎪

⎨

⎪

⎩

𝑝̃𝑜(𝑥)
𝑝̃𝑜(𝑥)+𝑝𝑔 (𝑥)

if 𝑥 ∈ 𝑇

0 otherwise
(2)

where 𝑇 denotes the set of real data, 𝑚𝑎𝑥𝐷(𝑥) denotes as the optimal
solution for the discriminator. Therefore, the maximum–minimum opti-
mization process of the standard GAN as in Eq. (1), which is simplified
in our model to minimizing G. We obtain the minimizing 𝐺 by com-
puting the JSD between the empirical and generative distributions. In
4

particular, we simplify the Kullback Leibler (KL) scatter associated with t
the generative and empirical distributions to the sum of the training
data. The KL scatter, and JSD formulas are as follows,

𝐾𝐿(𝑝̃𝑜(𝑥) ∥ (𝑝̃𝑜(𝑥) + 𝑝̃𝑔(𝑥))) =
∑

𝑥∈𝑇
[𝑝̃𝑜(𝑥)𝑙𝑜𝑔(𝑝̃𝑜(𝑥))

− 𝑝̃𝑜(𝑥)𝑙𝑜𝑔(𝑝̃𝑜(𝑥) + 𝑝̃𝑔(𝑥))]

𝐽𝑆𝐷(𝑝̃𝑜(𝑥) ∥ 𝑝̃𝑔(𝑥)) =
1
2
𝐾𝐿(𝑝̃𝑜(𝑥) ∥ (𝑝̃𝑜(𝑥) + 𝑝̃𝑔(𝑥)))

+ 1
2
𝐾𝐿(𝑝̃𝑔(𝑥) ∥ (𝑝̃𝑜(𝑥) + 𝑝̃𝑔(𝑥)))

(3)

Next, we need to use the above equation to do the optimal solution
or the generator, which is as follows,

(𝐺,𝑚𝑎𝑥𝐷(𝑥)) = 2𝐽𝑆𝐷(𝑝̃𝑜(𝑥)|𝑝̃𝑔(𝑥)) − 𝑙𝑜𝑔4

= 𝐾𝐿(𝑝̃𝑜(𝑥) ∥ (𝑝̃𝑜(𝑥) + 𝑝̃𝑔(𝑥)))

+ 𝐾𝐿(𝑝̃𝑔(𝑥) ∥ (𝑝̃𝑜(𝑥) + 𝑝̃𝑔(𝑥)))

=
∑

𝑥∈𝑇
[𝑝̃𝑜(𝑥)𝑙𝑜𝑔(𝑝̃𝑜(𝑥))

− 𝑝̃𝑜(𝑥)𝑙𝑜𝑔(𝑝̃𝑜(𝑥) + 𝑝̃𝑔(𝑥))]

+
∑

𝑥∈𝑇
[𝑝̃𝑔(𝑥)𝑙𝑜𝑔(𝑝̃𝑔(𝑥))

− 𝑝̃𝑔(𝑥)𝑙𝑜𝑔(𝑝̃𝑜(𝑥) + 𝑝̃𝑔(𝑥))]

(4)

here 𝐿(𝐺,𝑚𝑎𝑥𝐷(𝑥)) denotes the optimization process for 𝐺. In previous
tudy [25], we can see that the optimal solution of the discriminator
𝑎𝑥𝐷(𝑥) was the closed form solution. If the comment instances are not

he comment instances in 𝑇 which should be considered false, 𝑚𝑎𝑥𝐷(𝑥)
utput value is 0, and 𝐿(𝐺,𝑚𝑎𝑥𝐷(𝑥)) value is also 0. If the comment
nstances are the comment instances in 𝑇 which should be considered
rue, 𝑚𝑎𝑥𝐷(𝑥) output value equals the ratio of the empirical distribution
o the sum of the empirical and generative distributions, which means
hat the generator only needs the same comment instances as in 𝑇
o maximize the value function by Eq. (4). The generator assigns a
robability to each comment instance and evaluates the effect of each
omment instance on the value function. Our method is equivalent to
irectly optimizing the JSD without sampling from the generators so
hat optimizing the JSD becomes computationally tractable to train
enerators that generate discrete text sequences. We optimize JSD to
et the most effective generator for SATD instances. With the generator,
e input all types of instances, except for the maximum percent-
ge of SATD categories, into the generator to generate the required
mount of comment instances for balancing the dataset. For example,
he original sample contains three types of SATD which denotes as
𝑖𝑚𝑏𝑎𝑙𝑎𝑛𝑐𝑒 = {𝑐11 , 𝑐

1
2 ,… , 𝑐110, 𝑐

2
1 , 𝑐

2
2 , 𝑐

3
1 , 𝑐

3
2 , 𝑐

3
3}, 𝑐

1 denotes the first category
ATD that contains 10 instances, 𝑐2 denotes the second category SATD
hat contains two instances and 𝑐3 denotes the third category SATD
hat contains three instances. After the generation, we can get the new
ataset that denotes as 𝐶 = {𝑐11 , 𝑐

1
2 ,… , 𝑐110, 𝑐

2
1 , 𝑐

2
2 ,… , 𝑐28 , 𝑐

3
1 , 𝑐

3
2 ,… , 𝑐38}. In

articular, the number of generated instances are set to 0.8 × (𝑐2 − 𝑐1)
or 𝑐2 and 0.8 × (𝑐3 − 𝑐1) for 𝑐3.

.3. Embedding vector initialization

As SATD is expressed as the code comment written by developers,
t is essentially a textual sequence. Differently, it always contains some
ode snippets to make a comment more readable and understandable.
o obtain the initialization embedding vectors for comment instances,
e adopt the advanced CodeBERT model [26,53] because it inherently

akes the natural languages and code information into account. Code-
ERT is a pre-training model for programming languages and natural

anguages based on transformer-based neural network architecture. It
esigns two pre-training objectives, including the masked language
odel and replacement token detection, to make the model learn more

emantic information from corpora. When training the model, natural
extual and code sequences are spliced together, separated by a specific

oken [SEP]. Then, two tokens [CLS] and [EOS] are put in the front and

Information and Software Technology 158 (2023) 107190J. Yu et al.
Fig. 3. Flowchart of the feature extraction module.
at the end of this spliced sequence, respectively, in which [CLS] holds
the overall representation of the whole sequence and [EOS] represents
the ending.

In this work, we first tokenize the comment instance and then
initialize the embedding vectors for each word in the sequence using
CodeBERT. Formally, for a given comment instance 𝑋 = {𝑥1, 𝑥2,… , 𝑥𝑚}
where 𝑥 ∈ 𝐶, 𝑥𝑖 represents the 𝑖th word and 𝑚 denotes the sequence
length, we can produce the corresponding embedding vectors 𝑋𝑒𝑚𝑑
based on the following equation.

𝑋𝑒𝑚𝑑 = 𝐶𝑜𝑑𝑒𝐵𝐸𝑅𝑇 (𝑋) (5)

where 𝑋𝑒𝑚𝑑 = {𝑒1, 𝑒2,… , 𝑒𝑚} represents the embedding vectors and
𝑒𝑖 ∈ R𝑘 represents the embedding of 𝑖th word, 𝑘 is the dimension of
embeddings.

3.4. Feature extraction module

After we initialize the embedding vector for each comment instance,
we want to learn implicit semantic features to represent each comment
instance better, aiming to identify more SATDs. For this purpose, we
propose a feature extraction module shown in Fig. 3 that consists of
the following components.

Global Feature Encoder. To extract features from the embedded com-
ment instances, we design a global feature encoder for integrating
the sequence information [54]. Moreover, we employ the multi-head
attention mechanism in the encoder to learn discrepancy feature repre-
sentation and pay more attention to features that are more relevant for
the final goal (i.e., identifying SATD). For the input embedding 𝑋𝑒𝑚𝑏,
we generate three matrices 𝐾, 𝑄, 𝑉 as follows,

𝑄 = 𝑋𝑒𝑚𝑑 ∗ 𝜔𝑄

𝐾 = 𝑋𝑒𝑚𝑑 ∗ 𝜔𝐾 (6)
5

𝑉 = 𝑋𝑒𝑚𝑑 ∗ 𝜔𝑉
where 𝜔𝑄, 𝜔𝐾 , 𝜔𝑉 are learnable parameters, 𝑄, 𝐾, 𝑉 are produced
by a linear mapping with 𝑋𝑒𝑚𝑏. 𝑄 denotes the query, 𝐾 denotes the
key, 𝑉 denotes the value. We obtain the sets (𝑄,𝐾, 𝑉) by ℎ linear
transformations, where ℎ denotes the number of multi-head. Next, we
calculate the self-attention of each set which the formula as follows,

ℎ𝑒𝑎𝑑𝑗 (𝑄𝑗 , 𝐾𝑗 , 𝑉𝑗) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥

(

𝑄𝑗𝐾𝑇
𝑗

√

𝑑𝑘

)

𝑉𝑗 (7)

where 𝑗 denotes the 𝑗th set by linear transformations, 𝑑𝑘 denotes the
variance of 𝐾. we concatenate the h-heads 𝐻𝑒𝑎𝑑{ℎ𝑒𝑎𝑑1, ℎ𝑒𝑎𝑑2, .., ℎ𝑒𝑎𝑑ℎ}
of self-attention and the linear mapping to the final output which
denotes as 𝑋𝑎. Then, we introduce the residual network that fuses
the attention information with word embedding and prevents network
degradation, and employ layer normalization to normalize the output
of the residual network which accelerates convergence by the standard
normal distribution. The formulas are as follows,

𝑋𝑎𝑡𝑡 = 𝑋𝑒𝑚𝑑 +𝑋𝑎

𝑋𝑛𝑜𝑟𝑚 = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑋𝑎𝑡𝑡)
(8)

where 𝑋𝑎𝑡𝑡 denotes the result of residual network, 𝑋𝑛𝑜𝑟𝑚 denotes the
result of layer normalization.

Next, we put 𝑋𝑛𝑜𝑟𝑚 into a feed-forward network which consists of
two linear layers and an activation function, and the output is 𝑋𝑚𝑙𝑝.
Moreover, we combine 𝑋𝑚𝑙𝑝 and 𝑋𝑛𝑜𝑟𝑚 to repeat the Eq. (8). Repeating
n steps of the above operations can obtain the global feature encoder
𝑋ℎ𝑖𝑑𝑑𝑒𝑛.

Key Feature Extraction. In the previous study [14], the convolutional
neural network (CNN) can effectively extract critical information from
the text. Therefore, we select CNN to extract the critical information
from the global feature encoder 𝑋ℎ𝑖𝑑𝑑𝑒𝑛 in our model. To obtain the
better feature representation, we set the convolution kernel to different
window sizes, and slide the whole row on 𝑋ℎ𝑖𝑑𝑑𝑒𝑛 by convolution ker-
nel. The multiple convolution kernels generate feature representation

Information and Software Technology 158 (2023) 107190J. Yu et al.
Table 1
The information collection for the dataset.
Project Release #Comments #Defect #Design #Implementation

Apache Ant 1.7.0 4,137 13 (0.31%) 95 (2.30%) 13 (0.31%)
JMeter 0.4 9,548 22 (0.23%) 316 (3.31%) 21 (0.22%)
ArgoUML 1.4 6,478 127 (1.96%) 801 (12.36%) 411 (6.34%)
Columba 2.4.1 4,401 13 (0.30%) 126 (2.86%) 43 (0.98%)
EMF 3.3.2 2,968 8 (0.27%) 78 (2.63%) 16 (0.54%)
Hibernate 4.2 10,322 52 (0.50%) 355 (3.44%) 64 (0.62%)
JEdit 0.0.19 4,423 43 (0.97%) 196 (4.43%) 14 (0.32%)
JFreeChart 2.1 8,162 9 (0.11%) 184 (2.25%) 15 (0.18%)
JRuby 1.4.0 4,897 161 (3.29%) 343 (7.00%) 110 (2.25%)
SQuirrel 3.0.3 7,230 24 (0.33%) 209 (2.89%) 50 (0.69%)
in different dimensions and utilize the maximum pooling to take out a
key feature representation. Finally, we concatenate the whole critical
features to form a vector as the output of the feature extraction module
𝑋𝑐𝑜𝑣, where 𝑋𝑐𝑜𝑣 denotes the key feature representation obtained by the
feature extraction module.

3.5. Model training and test

Once the output of the feature extraction module is obtained, we
utilize the fully-connected layer to fuse the critical feature extraction
information. We then take the results of the fully-connected layer to
obtain the probability distribution of each category by the softmax
function. We use the cross-entropy loss function to optimize our model,
which is defined as:

𝐿𝑜𝑠𝑠(𝑝̃𝑝, 𝑝̃𝑡) = −
𝑧
∑

𝑖=1
𝑝̃𝑖𝑡𝑙𝑜𝑔(𝑝̃

𝑖
𝑝) (9)

where z is the total number of comment instances; 𝑝̃𝑝 and 𝑝̃𝑡 represents
the predictive category distribution and truly category distribution,
respectively.

After the model training, we initialize the new SATD instance by
the CodeBERT model to the embedding vector. Then we employ the
feature extraction module to obtain the key feature representation,
which including global feature encoder and key feature extraction.
Finally, we output the category to which this SATD instance belongs.

4. Experimental setup

4.1. Dataset

To evaluate the performance of our model, we conduct experiments
on a benchmark dataset proposed by [27], which collected source
code from 10 open source projects, extracted 62,566 code comments
from the source code of the 10 projects and classified these comments
into 6 comment categories. The dataset included Apache Ant, JMe-
ter, ArgoUML, Columba, EMF, Hibernate, JEdit, JFreeChart, JRuby,
and SQuirrel, respectively. Table 1 shows the details of the dataset,
including the release of the dataset, the number of code comments
(#Comments), the number of code comments that contain defect debt
(#Defect), the number of code comments that contain design debt
(#Design), and the number of code comments that contain implemen-
tation debt (#Implementation). In particular, parentheses indicate the
proportion of each type of SATD in the total number of comment
instances.

From the Table 1, we can see that the comments that contain
design debt are the highest percentage of total comments and the
average percentage of total comments is 4.32%. The comments that
contain defect debt average percentage of total comments is 0.75%.
The comments that contain implementation debt average percentage
of total comments is 1.21%. Based on the above analysis, we can see
that SATD has a low percentage of code comments and the number of
SATDs in each category is highly imbalanced.
6

4.2. Performance indicators

Our model aims to identify a category to which a SATD comment
belongs. Indeed, it is a multi-classification task for text. In order to
evaluate the performance of our model, we set up two sets of indicators,
one set is general indicators which are widely used in SATD identifi-
cation [16,17], and another set of indicators is special indicators for
evaluating imbalance data in multi-classification tasks. In general indi-
cators, we employ three indicators, i.e., Precision, Recall, and F-score,
and their formulas are as follows,

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

𝐹 − 𝑠𝑐𝑜𝑟𝑒 = 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

(10)

where TP denotes the number of technical debt comments correctly
predicted as a category, FP denotes the number of debt comments with
other categories but predicted as that category, and FN denotes the
number of debt comments with that category but predicted as other
categories [55]. For the three metrics, the higher values of each metric
represent the better performance of the model. The three metrics have
been widely used in the fields of both software engineering [24,43,56,
57] and machine learning [58–63].

In special indicators, we utilize three subset indicators as evaluation
metrics, i.e., weighted indicators (Precision-weight, Recall-weight, and
F-weight), indicators for each category (Precision-class, Recall-class,
and F-class), and M- atthews correlation coefficient (MCC). For con-
venience, we denote Precision-weight, Recall-weight, and F-weight as
weight-P, weight-R, and weight-F, respectively. We denote Precision-
class, Recall-class, and F-class as Precision, Recall, and F-score in each
type of SATD, respectively.

4.3. Statistic test

We first apply Wilcoxon signed-rank test [64] to analyze perfor-
mance differences between our method and the baseline method at sig-
nificance level 𝛼 = 0.05. Wilcoxon signed-rank test is a non-parametric
test that compares the median of the sample with the median of the
hypothesis [40,65]. Therefore, we employ the p-value of Wilcoxon
signed-rank to analyze the significance of the differences between
median results achieved by the two methods. If the p-value is lower
than 0.05, it means that there is a statistically significant difference
between the two methods. In addition, we calculate the effect size
(Cliff’s delta) to quantify the difference between the two methods. The
value of Cliff’s delta (𝛿) ranges from −1 to 1. In particular, there are
three groups of differences: negligible (0 <|Cliff’s 𝛿| < 0.147), small
(0.147 <|Cliff’s 𝛿| < 0.33), medium (0.33 <|Cliff’s 𝛿| < 0.474), or large
(|Cliff’s 𝛿| > 0.474).

Information and Software Technology 158 (2023) 107190J. Yu et al.
4.4. Parameter settings

In the JSD-GAN step, we set the epoch of adversarial networks as
500, the batch size as 64, learning rate as 0.01. In particular, the MLE
epoch as 0. We use the CodeBERT model to initialize every word, which
sets the dimension of the word embedding as 768. In the global feature
encoder, we set the steps of encoder as 2, and the number of heads as
5. In key feature extraction, we set three filters with different window
sizes [2,3,4]. We set the learning rate as 1e-4, the batch size as 128, and
the epoch as 200. In addition, We take turns to choose in turn one of the
ten projects as the test set and the others are treated as training set to
verify the performance of our model. We have released the code scripts
and benchmark dataset at https://figshare.com/articles/dataset/GCF-
1_0/21746957 for reproducing our experiments.

4.5. Research questions

We set the following three research questions (RQs) in this work to
evaluate our proposed model.

RQ1: Is our proposed model outperforming the state-of-the-art
methods?

Motivation: Our study focus on detecting multi-types of SATDs
tasks (i.e., defect debt, design debt, implementation debt). A recent
study proposed machine learning techniques to classify SATD in three
types and obtained state-of-the-art performance. Therefore, this re-
search question investigates whether the GCF model performs better
in multi-types of SATD tasks than the existing method.

RQ2: Is our model better than its variants?
Motivation: Our GCF model first introduces the data augmentation

technique to generate synthetic instances for solving the imbalance
issue. Then, we employ CodeBERT to initialize the embedding vectors
for the input instances and propose a feature extraction module to
learn representative features. This question investigates whether each
component of our GCF model effectively improves the performance of
multi-classification SATD.

RQ3: Does our model perform better than other methods of gener-
ating adversarial networks to balance samples?

Motivation: Our GCF model employs the JSD-GAN to generate
synthetic instances to balance the original dataset, which obtains better
performance in discrete sequence generative. This question investi-
gates whether other mainstream GAN models are more practical to
augment the data and relieve the imbalance issue, aiming to promote
identification performance.

5. Experimental results

5.1. RQ1: Is our proposed model outperforming the state-of-the-art meth-
ods?

Methods: To answer this question, we compare our model with the
state-of-the-art method XGBoost proposed in [19] to identify multi-
types of SATDs on code comments that contain SATD. Firstly, the
raw data was processed by five steps: filtering, change record dele-
tion, tokenization, stop word deletion, and lemmatization. Then, the
method utilized EDA to solve the problem of data imbalance, em-
ployed chi-square to make the feature selection of the data, applied
the CountVectorizer technique to convert features into a feature vec-
tor representation, and used XGBoost to train the classifier for debt
classification of SATD comments. XGBoost obtained state-of-the-art
performance on the three debt classification tasks. In this RQ, we use
general indicators to verify the effectiveness of our method for identi-
fying SATD. In particular, we also use special indicators to show the
effectiveness of our method for SATD imbalanced multi-classification
tasks.

Results: Table 2 shows the results of our model and state-of-the-
art method for Precision, Recall, and F-score, respectively. From this
7

table, we can see that our model improves the average value over the
XGBoost method by 10.41%, 26.69%, and 27.31% in terms of Precision,
Recall, and F-score, respectively. In terms of Precision, 7 projects out
of 10 projects obtain a better performance than the XGBoost method.
The Precision of JMeter is the lowest performance in our model which
is 0.4325. The Precision of EMF obtains the best performance in our
model which is 0.8295. In terms of Recall, 9 projects in 10 projects
obtain a better performance than the XGBoost model. The Recall of
JMeter is the lowest performance in our model which is 0.5011. The
Recall of EMF obtains the best performance in our model which is
0.6681. In terms of F-score, 9 projects in 10 projects obtain a better
performance than the XGBoost model. The F-score of JMeter is the
lowest performance in our model which is 0.4502. The F-score of EMF
obtains the best performance in our model which is 0.7107. Table 3
presents the p-value of Wilcoxon signed-rank test and the Cliff’s 𝛿 for
three indicators. Noting that, in most of the projects, our GCF model is
significantly superior to the XGBoost method with large effectiveness
level in terms of all three indicators.

In addition, Table 4 shows the results of our model and XGBoost in
terms of weight-P, weight-R, weight-F, and MCC. From this table, we
can see that our model obtains the average value of 0.7840, 0.7654,
0.7606, and 0.4074 in terms of four indicators, respectively. Our model
performs better weight-P on 9 out of 10 projects and improvements
in the average value of 7.98% than the XGBoost method. Our model
performs better weight-R on 6 out of 10 projects and improvements
in the average value of 4.25% than the XGBoost method. Our model
performs better weight-F on 9 out of 10 projects and improvements
in the average value of 8.16% than the XGBoost method. Our model
performs better MCC on 9 out of 10 projects and improvements in the
average value of 55.61% than the XGBoost method.

Table 5 presents the results of our GCF model and XGBoost method
on each SATD type in terms of Precision, Recall, and F-score. From
this table, we can observe that our model obtains the average value
of 0.8365, 0.8753, and 0.8455 on the type of design debt in terms
of Precision, Recall, and F-score, respectively. Our model achieves
improvement by 5.94%, −4.23%, and 0.68% than the XGBoost method
in terms of three indicators. Our model obtains the average value
of 0.5500, 0.4730, and 0.4714 on the type of implementation debt
in terms of Precision, Recall, and F-score, respectively. Our model
achieves improvement by 30.79%, 94.27%, and 83.80% than the XG-
Boost method in terms of three indicators. our model obtains the
average value of 0.5241, 0.4137, and 0.4386 on the type of defect
debt in terms of Precision, Recall, and F-score, respectively. Our model
achieves improvement by 0.41%, 63.31%, and 41.32% than the XG-
Boost method in terms of three indicators. In particular, the average
Recall of our model shows worse performance than XGBoost in the
type of design debt. This is because the number of design debts is
much more, leading to XGBoost can learn more knowledge. By contrast,
our method performs better than XGBoost despite the few numbers
of implementation and defect debt, which indicates that our method
effectively handles the imbalance problem.

The XGBoost model has been compared with some mainstream
methods for multi-types of SATD comments, and XGBoost outperforms
these methods. Since our model performs better than XGBoost, we
can conclude that our model can also outperform other mainstream
methods for multi-types of SATD comments.

Answer to RQ1

Our proposed model performs better than the state-of-the-art
method in terms of three indicators for detecting multi-types
of SATD comments.

https://figshare.com/articles/dataset/GCF-1_0/21746957
https://figshare.com/articles/dataset/GCF-1_0/21746957
https://figshare.com/articles/dataset/GCF-1_0/21746957

Information and Software Technology 158 (2023) 107190J. Yu et al.
Table 2
The results of our model and XGBoost in terms of Precision, Recall, and F-score.
Project Precision Recall F-score

XGBoost GCF Gains XGBoost GCF Gains XGBoost GCF Gains

Apache Ant 0.5933 0.7096 19.60% 0.4226 0.5869 38.88% 0.4397 0.6289 43.02%
JMeter 0.5024 0.4325 −13.91% 0.5124 0.5011 −2.20% 0.5051 0.4502 −10.87%
ArgoUML 0.5348 0.6672 24.75% 0.4137 0.5220 26.19% 0.4046 0.5474 35.31%
Columba 0.5757 0.6418 11.48% 0.5452 0.6493 19.11% 0.5570 0.6222 11.71%
EMF 0.6489 0.8295 27.83% 0.4149 0.6681 61.04% 0.4223 0.7107 68.31%
Hibernate 0.5966 0.5766 −3.36% 0.4547 0.5425 19.33% 0.4863 0.5516 13.42%
JEdit 0.5928 0.5972 0.75% 0.4270 0.5878 37.64% 0.4374 0.5766 31.85%
JFreeChart 0.5126 0.5069 −1.11% 0.5470 0.5858 7.09% 0.4836 0.5034 4.09%
JRuby 0.4991 0.6889 38.03% 0.3962 0.5703 43.97% 0.3745 0.5926 58.26%
SQuirrel 0.7183 0.7187 0.06% 0.5692 0.6597 15.89% 0.5783 0.6826 18.04%

Average 0.5774 0.6369 10.41% 0.4703 0.5874 26.69% 0.4689 0.5866 27.31%
Table 3
p-value and Cliff’s Delta(𝛿) for GCF and XGBoost in terms of Precision, Recall, and F-score.
Project Precision Recall F-score

p-value 𝛿 p-value 𝛿 p-value 𝛿

Apache Ant 9.77e−03 0.6(L) 9.77e−03 0.6(L) 1.95e−03 1.0(L)
JMeter 1.95e−03 −1.0(L) 1.95e−03 −1.0(L) 1.95e−03 −1.0(L)
ArgoUML 1.95e−03 1.0(L) 1.95e−03 1.0(L) 1.95e−03 1.0(L)
Columba 9.77e−03 0.76(L) 9.77e−03 0.76(L) 1.95e−03 0.76(L)
EMF 3.71e−02 0.68(L) 3.71e−02 0.68(L) 1.95e−03 1.0(L)
Hibernate 9.77e−03 −0.6(L) 9.77e−03 −0.6(L) 1.95e−03 1.0(L)
JEdit 4.32e−01 −0.28(S) 4.32e−01 −0.28(S) 1.95e−03 1.0(L)
JFreeChart 9.22e−01 −0.12(N) 9.22e−01 −0.12(N) 5.57e−01 −0.04(N)
JRuby 1.95e−03 1.0(L) 1.95e−03 1.0(L) 1.95e−03 1.0(L)
SQuirrel 9.22e−01 −0.04(N) 9.22e−01 −0.04(N) 1.95e−03 1.0(L)
Table 4
The results of our model and XGBoost in terms of weight-P, weight-R, and weight-F.
Project weight-P weight-R weight-F MCC

XGBoost GCF XGBoost GCF XGBoost GCF XGBoost GCF

Apache Ant 0.7434 0.8129 0.7868 0.8297 0.7923 0.8137 0.2475 0.4631
JMeter 0.8383 0.8321 0.8323 0.7621 0.8349 0.7918 0.2564 0.1982
ArgoUML 0.5836 0.7156 0.6155 0.7102 0.5389 0.6769 0.1735 0.4236
Columba 0.7024 0.7547 0.7132 0.7099 0.7063 0.7123 0.3509 0.4387
EMF 0.7246 0.8464 0.7745 0.8490 0.7014 0.8291 0.2171 0.5621
Hibernate 0.7119 0.7315 0.7503 0.7414 0.7136 0.7335 0.2330 0.3250
JEdit 0.7587 0.7765 0.7858 0.7739 0.7319 0.7683 0.2579 0.3722
JFreeChart 0.8621 0.8806 0.7192 0.7808 0.7612 0.8167 0.2720 0.3476
JRuby 0.5509 0.6910 0.5765 0.6909 0.5036 0.6648 0.1947 0.4389
SQuirrel 0.7843 0.7983 0.7873 0.8057 0.7478 0.7986 0.4151 0.5047

Average 0.7260 0.7840 0.7341 0.7654 0.7032 0.7606 0.2618 0.4074
Table 5
The each SATD type results of our model and XGBoost in terms of Precision, Recall, and F-score.

Project Design debt Implementation debt Defect debt

Precision Recall F-score Precision Recall F-score Precision Recall F-score

XGBoost GCF XGBoost GCF XGBoost GCF XGBoost GCF XGBoost GCF XGBoost GCF XGBoost GCF XGBoost GCF XGBoost GCF

Apache Ant 0.8096 0.8620 0.9600 0.9453 0.8810 0.9016 0.3250 0.5700 0.1538 0.3846 0.1981 0.4580 0.6400 0.6966 0.1538 0.4308 0.2400 0.5271
JMeter 0.9122 0.9172 0.9025 0.8177 0.9071 0.8645 0.2827 0.1931 0.3619 0.3143 0.3172 0.2385 0.3127 0.1872 0.2727 0.3714 0.2911 0.2478
ArgoUML 0.6287 0.7034 0.9316 0.9406 0.7507 0.8047 0.5421 0.8097 0.1363 0.4161 0.2164 0.5471 0.4336 0.4884 0.1732 0.2094 0.2465 0.2904
Columba 0.7841 0.8483 0.8222 0.7365 0.8026 0.7365 0.5595 0.5491 0.5209 0.6884 0.5379 0.5733 0.3835 0.5279 0.2923 0.5231 0.3305 0.5130
EMF 0.7801 0.8576 0.9821 0.9667 0.8694 0.9086 0.4667 0.7988 0.0375 0.3625 0.0681 0.4886 0.7000 0.8321 0.2250 0.6750 0.3293 0.7350
Hibernate 0.7873 0.8222 0.9251 0.8541 0.8492 0.8378 0.3669 0.4531 0.1813 0.4813 0.2426 0.4646 0.6381 0.4544 0.2577 0.2923 0.3671 0.3523
JEdit 0.8084 0.8587 0.9745 0.8816 0.8838 0.8689 0.2841 0.5204 0.1857 0.3674 0.2233 0.4147 0.6857 0.4127 0.1209 0.5143 0.2050 0.4463
JFreeChart 0.9378 0.9608 0.7522 0.8152 0.8203 0.8816 0.2270 0.2232 0.5333 0.6533 0.2854 0.3322 0.3730 0.3366 0.3556 0.2889 0.3452 0.2965
JRuby 0.6376 0.6853 0.9329 0.8915 0.7560 0.7748 0.3691 0.7306 0.1400 0.5540 0.1817 0.6290 0.4906 0.6508 0.1155 0.2655 0.1856 0.3741
SQuirrel 0.8104 0.8499 0.9569 0.9043 0.8776 0.8762 0.7818 0.6517 0.1840 0.5080 0.2938 0.5677 0.5625 0.6544 0.5667 0.5667 0.5634 0.6038

Average 0.7896 0.8365 0.9140 0.8753 0.8398 0.8455 0.4205 0.5500 0.2435 0.4730 0.2565 0.4714 0.5220 0.5241 0.2533 0.4137 0.3104 0.4386
5.2. RQ2: Is our model better than its variants?

Methods: To answer this question, we explore the effectiveness
of our model from different aspects. Specifically, we generate the
following three variants for comparison by removing and substituting
8

some components used in our model. In addition, we choose three
representative methods to replace the CNN part in our model for SATD
comments classification (i.e., BiLSTM, BiLSTM+attention, and GRU),
aiming to explore how CNN impacts the performance of our model.
As a result, we have the following six variants.

Information and Software Technology 158 (2023) 107190J. Yu et al.

m
a
o
b
M
b
1
v
a
i
a
t
b
l
a
o
t

c
m
c
i

• NoGAN: This variant removes the JSD-GAN in our model, aiming
to explore how JSD-GAN impacts the performance of our model.

• Glove: This variant utilizes the statical Glove technique [66]
to replace the CodeBERT for initializing the word embedding,
aiming at exploring how CodeBERT impacts the performance of
our model.

• NoEncoder: This variant removes the global feature encoder in
our model, exploring how the global feature encoder impacts the
performance of our model.

• biLSTM (Zhang et al. [67]): Bi-directional Long Short-Term Mem-
ory (BiLSTM) is a combination of forward LSTM and backward
LSTM. It is often used to model contextual information in natural
language processing tasks. BiLSTM could better capture bidirec-
tional semantic dependencies. It is widely used in text classifica-
tion tasks.

• BiLSTM+attention (Zhou et al. [68]): This approach proposed
a bi-directional long short-term memory network with attention
mechanism for text classification task. The method used BiLSTM
to encode the text feature sequence temporally and employed
the attention mechanism to discover the weights of temporal text
features for overall text identification at different moments. We
abbreviate this method name as bi+attention.

• GRU (Chung et al. [69]): GRU is a variant of LSTM that solved the
problems of long-term memory and gradient in backpropagation.
GRU is commonly used methods in text classification.

Results: Table 6 shows the performance of our model and its 6
variants in terms of Precision. From this table, we can observe that
the performance of our model is better than all variant models in
9 projects in terms of precision. The average Precision value of our
model is 0.6369, which achieves improvements by 7.18%, 18.47%,
13.38%, 25.61%, 17.90%, and 24.71% compared with NoGAN, Glove,
NoEncoder, BiLSTM, Bi+attention, and GRU, individually. Table 7
shows the performance of our model and its 6 variants in terms of
Recall. From this table, we can observe that the performance of our
model is better than all variant models in 9 projects in terms of Recall.
The average Recall value of our model is 0.5874, which achieves im-
provements by 9.03%, 13.78%, 28.90%, 20.55%, 14.80%, and 16.07%
compared with NoGAN, Glove, NoEncoder, BiLSTM, Bi+attention, and
GRU, individually. Table 8 shows the performance of our model and
its 6 variants in terms of F-score. From this table, we can observe
that the performance of our model is better than all variant models
in 8 projects in terms of F-score. The average F-score value of our
model is 0.5866, which achieves improvements by 8.91%, 15.68%,
27.47%, 23.59%, 15.83%, and 19.75% compared with NoGAN, Glove,
NoEncoder, BiLSTM, Bi+attention, and GRU, individually.

Compared with NoGAN, the JSD-GAN effectively solves the data
imbalance problem and obtains outstanding performance in multi-types
of SATD classification task. CodeBERT fuses the information between
code snippets and natural language, and improves the performance
compared to the Glove technique. Compared with NoEncoder, the
global feature encoder enhances the representation of data features.
In addition, compared with BiLSTM, Bi+attention, and GRU, the CNN
module in our model also achieves better performance than the three
baseline methods.

Answer to RQ2

Our model performs better than its variants, and all mod-
ules employed in our model have positive impact on its
performance.

5.3. RQ3: Does our model perform better than other methods of generating
adversarial networks to balance samples?

Methods: To answer this question, we choose four mainstream
GAN methods to generate synthetic instances to solve the imbalance
9

problem. We substitute the GAN module and make other components
of our model the same. Below, we introduce these techniques.

• RelGAN (Weili et al. [70]): This approach introduced three im-
proved modules to standard GAN. Firstly, the generator employed
relational memory that made strong expressive power and mod-
eling ability on long text. Secondly, on discrete data, the RelGAN
was trained by the gumbel-softmax relaxation model, which made
the model simpler. Thirdly, multi-layer word vector representa-
tion was used in the discriminator, which updated the generator
towards more diversity.

• MaliGAN (Tong et al. [71]): This approach proposed the maxi-
mum likelihood augmented discrete generative adversarial net-
work (MaliGAN). The method followed the discriminator of the
standard GAN, and optimized the generator by using significant
sampling to make the training process closer to the maximum
likelihood (MLE) training of auto regressive model, resulting in
more stability and minor gradient variance.

• SeqGAN (Lantao et al. [72]): This approach treated the sequence
generation problem as a sequential decision process. In this ap-
proach, under the standard GAN model, the currently generated
token was viewed as a state, the next generated token was viewed
as an action, and a discriminator was used to evaluate the whole
sequence to guide the generator learning. This method treated
the generator as a random policy to solve the problem that the
gradient was hard to pass to the generator. In the policy gradient,
MCT search was used to approximate the value of the state–action
pair.

• DGSAN (Ehsan et al. [73]): This approach proposed a domain-
based GAN framework in which the gradient transfer problem
was solved by considering the explicit distribution of generators
(due to the advantage of finite discrete domains) and found a
closed relationship between the following generator, the current
generator and the current discriminator. The method unified the
generators and discriminators in a single network.

Results: Table 9, 10, and 11 represent the performance of our
odel and the four comparative methods in terms of Precision, Recall,

nd F-score, respectively. From Table 9, we can see that, in terms
f Precision, the average value by our model achieves improvement
y 16.07%, 13.94%, 19.31%, and 21.97% compared with RelGAN,
aliGAN, SeqGAN, and DGSAN, individually. Our model obtains the

est average Precision of 0.6369 and the average improvement by
7.82%. From Table 10, we can see that, in terms of Recall, the average
alue by our model achieves improvement by 11.29%, 9.98%, 15.01%,
nd 8.91% compared with RelGAN, MaliGAN, SeqGAN, and DGSAN,
ndividually. Our model obtains the best average Recall of 0.5874 and
n average improvement of 11.30%. From Table 11, we can see that, in
erms of F-score, the average value by our model achieves improvement
y 12.54%, 10.84%, 16.06%, and 14.80% compared with RelGAN, Ma-
iGAN, SeqGAN, and DGSAN, individually. Our model obtains the best
verage F-score value of 0.5866 and achieves an average improvement
f 13.56%. Moreover, our model achieves better performance in all
hree indicators for each project than the four baseline methods.

As the generated synthetic instances have some noise, only by
hoosing a suitable method can we improve the classification perfor-
ance of model. The analysis in this section shows that the method we

hoose, JSD-GAN, has relatively less noise in the generated synthetic
nstances compared to other methods.

Answer to RQ3

Our model performs better than others with different GAN
modules, and the JSD-GAN module in our model has a positive
impact on the performance of multi-type SATD classification
tasks.

Information and Software Technology 158 (2023) 107190J. Yu et al.
Table 6
The detailed results for Precision in our model and six baseline methods.

Project NoGAN Glove NoEncoder BiLSTM Bi+attention GRU GCF

Apache Ant 0.6860 0.6601 0.6222 0.5732 0.5065 0.5141 0.7096
JMeter 0.4412 0.4245 0.4122 0.3768 0.4175 0.4014 0.4325
ArgoUML 0.6381 0.6348 0.6557 0.5821 0.5973 0.5613 0.6672
Columba 0.5982 0.5848 0.5717 0.5127 0.5769 0.5370 0.6418
EMF 0.7467 0.5633 0.6012 0.5807 0.6749 0.6077 0.8295
Hibernate 0.5792 0.5357 0.5394 0.4619 0.4835 0.4670 0.5766
JEdit 0.5466 0.4720 0.5200 0.4988 0.5557 0.4974 0.5972
JFreeChart 0.4883 0.4314 0.3898 0.4131 0.4078 0.4026 0.5069
JRuby 0.5442 0.4655 0.6182 0.5476 0.5591 0.5760 0.6889
SQuirrel 0.6735 0.6041 0.6868 0.5236 0.6228 0.5425 0.7187

Average 0.5942 0.5376 0.5617 0.5071 0.5402 0.5107 0.6369
Table 7
The detailed results for Recall in our model and six baseline methods.

Project NoGAN Glove NoEncoder BiLSTM Bi+attention GRU GCF

Apache Ant 0.5668 0.5468 0.4510 0.5085 0.4928 0.4921 0.5869
JMeter 0.4508 0.4567 0.4186 0.3887 0.4590 0.4400 0.5011
ArgoUML 0.5180 0.5202 0.4643 0.5032 0.5154 0.4975 0.5220
Columba 0.5553 0.5705 0.5160 0.5279 0.5576 0.5776 0.6493
EMF 0.5809 0.5140 0.4488 0.5351 0.5693 0.5806 0.6681
Hibernate 0.5437 0.5140 0.4530 0.4177 0.4724 0.4634 0.5425
JEdit 0.5270 0.4927 0.4251 0.4959 0.5532 0.4955 0.5878
JFreeChart 0.5604 0.4943 0.4324 0.4820 0.4585 0.4596 0.5858
JRuby 0.4815 0.4383 0.4470 0.5028 0.5105 0.5107 0.5703
SQuirrel 0.6030 0.6150 0.5008 0.5108 0.5280 0.5437 0.6597

Average 0.5387 0.5163 0.4557 0.4873 0.5117 0.5061 0.5874
Table 8
The detailed results for F-score in our model and six baseline methods.

Project NoGAN Glove NoEncoder BiLSTM Bi+attention GRU GCF

Apache Ant 0.6003 0.5817 0.4744 0.5278 0.4937 0.4974 0.6289
JMeter 0.4323 0.4310 0.4128 0.3743 0.4228 0.3907 0.4502
ArgoUML 0.5405 0.5377 0.4627 0.5122 0.5266 0.5086 0.5474
Columba 0.5517 0.5723 0.5232 0.5030 0.5435 0.5292 0.6222
EMF 0.6111 0.5262 0.4753 0.5121 0.5835 0.5734 0.7107
Hibernate 0.5417 0.5214 0.4594 0.4225 0.4693 0.4638 0.5516
JEdit 0.5185 0.4634 0.4250 0.4855 0.5369 0.4729 0.5766
JFreeChart 0.4885 0.4243 0.4000 0.4253 0.4186 0.4084 0.5034
JRuby 0.4772 0.4097 0.4273 0.4868 0.5156 0.5207 0.5926
SQuirrel 0.6242 0.6031 0.5418 0.4966 0.5539 0.5334 0.6826

Average 0.5386 0.5071 0.4602 0.4746 0.5064 0.4898 0.5866
Table 9
The detailed results for Precision in our model and four GAN baseline methods.

Project RelGAN MaliGAN SeqGAN DGSAN GCF

Apache Ant 0.6358 0.6342 0.6277 0.5734 0.7096
JMeter 0.4130 0.4159 0.4177 0.4000 0.4325
ArgoUML 0.5803 0.5763 0.5779 0.5621 0.6672
Columba 0.5404 0.5536 0.5305 0.5219 0.6418
EMF 0.6657 0.6775 0.6464 0.5431 0.8295
Hibernate 0.5320 0.5491 0.5396 0.5061 0.5766
JEdit 0.5588 0.5322 0.5113 0.5688 0.5972
JFreeChart 0.4170 0.4313 0.3583 0.4078 0.5069
JRuby 0.4728 0.5823 0.5089 0.5327 0.6889
SQuirrel 0.6716 0.6374 0.6199 0.6058 0.7187

Average 0.5487 0.5590 0.5338 0.5222 0.6369
10
Table 10
The detailed results for Recall in our model and four GAN baseline methods.

Project RelGAN MaliGAN SeqGAN DGSAN GCF

Apache Ant 0.5838 0.5691 0.5796 0.5625 0.5869
JMeter 0.4518 0.4545 0.4463 0.4634 0.5011
ArgoUML 0.5149 0.5121 0.5091 0.5284 0.5220
Columba 0.5716 0.5581 0.5619 0.5763 0.6493
EMF 0.5552 0.5952 0.5470 0.5576 0.6681
Hibernate 0.5148 0.5116 0.5143 0.5141 0.5425
JEdit 0.5159 0.5112 0.4936 0.5481 0.5878
JFreeChart 0.4916 0.4642 0.3677 0.4800 0.5858
JRuby 0.4489 0.5226 0.5024 0.5299 0.5703
SQuirrel 0.6294 0.6422 0.5855 0.6332 0.6597

Average 0.5278 0.5341 0.5107 0.5393 0.5874

Information and Software Technology 158 (2023) 107190J. Yu et al.
Table 11
The detailed results for F-score in our model and four GAN baseline methods.

Project RelGAN MaliGAN SeqGAN DGSAN GCF

Apache Ant 0.6002 0.5857 0.5967 0.5556 0.6289
JMeter 0.4189 0.4224 0.4212 0.3990 0.4502
ArgoUML 0.5291 0.5234 0.5204 0.5346 0.5474
Columba 0.5458 0.5436 0.5253 0.5213 0.6222
EMF 0.5670 0.6119 0.5353 0.5330 0.7107
Hibernate 0.5179 0.5185 0.5154 0.5028 0.5516
JEdit 0.5312 0.5064 0.4941 0.5446 0.5766
JFreeChart 0.4197 0.4108 0.3545 0.3783 0.5034
JRuby 0.4368 0.5340 0.4983 0.5250 0.5926
SQuirrel 0.6457 0.6354 0.5930 0.6155 0.6826

Average 0.5212 0.5292 0.5054 0.5110 0.5866

Fig. 4. The line chart for three indicators among different learning rates.

6. Discussion

6.1. The impact of different parameter settings

In this section, we first discuss the impacts of hyper-parameters
on the performance of our model and the impacts of the number of
generative synthetic instances on the performance of our model. We
investigate the hyper-parameters learning rate (LR) and batch size (BS)
separately. Then, we investigate the number of generative synthetic in-
stances (MT). We only modify the parameters that need to be discussed
while ensuring that other parameters remain unchanged, and observe
the impact of those parameters to our model.

The impact of LR. We empirically select four different LR settings
from {1e-5, 5e-5, 1e-4, 5e-4} and conduct experiments with each set.
Fig. 4 presents the results of each LR in terms of three indicators. From
this figure, we can see that, LR that is too small or too large does not
perform the best in our model. Therefore, we choose the LR as 1e-4
that obtains the better performance in terms of Precision, Recall, and
F-score.

The impact of BS. We empirically select four different BS settings
from {32, 64, 128, 256} and conduct experiments with each set. Fig. 5
presents the results of each BS in terms of three indicators. From this
figure, we can see that, BS that is too small or too large does not
perform the best in our model. Therefore, we choose the BS as 128
which obtains better performance in terms of Precision, Recall, and
F-score.

The impact of MT. We define the number of generated synthetic
instances as follows: first, we select the category that contains the
maximum number of instances, then we subtract each of the other
11
Fig. 5. The line chart for three indicators among different batch sizes.

Table 12
The detailed results for Precision in different proportions of generative samples.

Project 0.2 0.4 0.6 0.8 1.0

Apache Ant 0.6373 0.6443 0.6648 0.7096 0.5854
JMeter 0.4083 0.4056 0.4177 0.4325 0.4016
ArgoUML 0.6148 0.6416 0.6336 0.6672 0.6231
Columba 0.6107 0.5804 0.6087 0.6418 0.5684
EMF 0.7077 0.7151 0.7776 0.8295 0.7080
Hibernate 0.5434 0.5357 0.5548 0.5766 0.5127
JEdit 0.5343 0.5503 0.5637 0.5972 0.5395
JFreeChart 0.4490 0.4257 0.4208 0.5069 0.4175
JRuby 0.5100 0.5258 0.5776 0.6889 0.5437
SQuirrel 0.6994 0.6971 0.6691 0.7187 0.6483

Average 0.5715 0.5722 0.5889 0.6369 0.5548

categories with this category, and the difference obtained from the
subtraction is multiplied by 0.8 times which is the number of generated
synthetic instances we choose for each category. To investigate the
effect of different multiples (MT) on our model, we empirically select
five different MT settings from {0.2, 0.4, 0.6, 0.8, 1.0} and conduct
experiments with each set. Table 12, 13, 14 present the results of each
MT in terms of Precision, Recall, and F-score. From those tables, we can
see that the performance increases with the increase of MT before 0.8
and decreases after 0.8, which indicates that the much more generated
synthetic instances have the more noisy and a negative impact on
the classification performance of our model. Therefore, we choose the
MT as 0.8 that obtains the better performance and the better average
performance in terms of Precision, Recall, and F-score.

Due to different data labels and distributions, there are different
parameter choices. Therefore, our parameters provide basic guidance.

6.2. Error analysis

In this section, we analyze the error results of our GCF method.
We choose examples from JMeter because it obtains the worse perfor-
mance. We use design debt as an example and discuss two types of
errors. The first scenario is that the original instance is design debt, and
our model incorrectly identifies it as another debt. The second scenario
is that the original instance is another debt category, and our model
incorrectly identifies it as design debt. Fig. 6 shows examples of our
model incorrect classification. Example 1 represents that the original
instance is a design debt. Our model identifies it as a defect debt.
Example 2 represents that the original instance is an implementation
debt, and our model identifies it as design debt. Example 3 represents

Information and Software Technology 158 (2023) 107190J. Yu et al.

m
t
i
w
t
c
a
a

i
N
s
d
t
c
c
c
i
s

t
c
d
c

6

t

0

Table 13
The detailed results for Recall in different proportions of generative samples.

Project 0.2 0.4 0.6 0.8 1.0

Apache Ant 0.5794 0.5409 0.5829 0.5869 0.5441
JMeter 0.4404 0.4612 0.4728 0.5011 0.4554
ArgoUML 0.5192 0.5178 0.5261 0.5220 0.5271
Columba 0.5812 0.5703 0.5816 0.6493 0.5857
EMF 0.5878 0.6043 0.5988 0.6681 0.5952
Hibernate 0.5154 0.5029 0.5131 0.5425 0.5081
JEdit 0.5355 0.5383 0.5378 0.5878 0.5395
JFreeChart 0.4490 0.4684 0.4883 0.5858 0.4564
JRuby 0.4740 0.4650 0.5080 0.5703 0.4855
SQuirrel 0.6192 0.6133 0.6306 0.6597 0.6218

Average 0.5301 0.5282 0.5440 0.5874 0.5319

Table 14
The detailed results for F-score in different proportions of generative samples.

Project 0.2 0.4 0.6 0.8 1.0

Apache Ant 0.5971 0.5751 0.6070 0.6289 0.5457
JMeter 0.4133 0.4164 0.4264 0.4502 0.4124
ArgoUML 0.5388 0.5405 0.5483 0.5474 0.5471
Columba 0.5722 0.5598 0.5795 0.6222 0.5614
EMF 0.6180 0.6086 0.6391 0.7107 0.6211
Hibernate 0.5203 0.5141 0.5072 0.5516 0.5058
JEdit 0.5274 0.5386 0.5352 0.5766 0.5318
JFreeChart 0.4443 0.4136 0.4088 0.5034 0.4084
JRuby 0.4592 0.4625 0.5177 0.5926 0.4885
SQuirrel 0.6424 0.6353 0.6306 0.6826 0.6291

Average 0.5333 0.5265 0.5400 0.5866 0.5251

that the original instance is a defect debt, and our model identifies it
as design debt.

For Example 1, as the expression does not contain the semantic
eaning that it is obviously due to design, it is more doubtful whether

he setup is the correct setup and tends to be a defect. Hence, our model
dentifies it as a defect debt. Moreover, we invite three developers
ith more than 5 years of working experience. We first give them

he relevant background knowledge, and then let them identify this
omment. Two of them identify the comment as a defect debt and one
s design debt. So there are also some classifications in the dataset that
re not necessarily accurate.

For Example 2, the sentence is a long sentence while the key feature
s in the last, and the preceding sentences tend to be design debt.
evertheless, we intercept the long sentence because the number of

hort sentences far exceeds the number of long sentences in the whole
ata set, and long sentences result in excessively redundant informa-
ion during word embedding, which can lead to unnecessary program
onsumption. So in this sentence, we remove the critical feature that
auses the judgment failure. Thus, in the later work, we need to
onsider improving the classification performance of long sentences by
ntercepting long sentences without compromising the features of long
entences.

For Example 3, the first sentence has no explicit debt tendency, and
he second sentence looks like design debt. However, the first sentence
ombines with the second sentence, which tends to the type of defect
ebt. Therefore, in future work, our model needs to be improved for
ontextual linkage to perform contextual linkage identification better.

.3. Implications

Our study provides implications for subsequent research on multi-
ypes of SATDs.

Our model achieved better performance on the average values of
.6369, 0.5874, and 0.5866 in terms of Precision, Recall, and F-score,
12
respectively. Based on our results, it can be traced back to relevant lo-
cations in the source code through code comments which contain debt.
Therefore, developers can spend less effort locating the corresponding
source code and fixing errors [19]. Based on our findings, developers
can train a cross-project model or reuse our already-trained model to
handle multi-type SATD identification in extended data. In particular,
our model performs better on few number data, so we recommend our
model for multi-type SATD prediction when there is only a few data on
hand.

For researchers, identifying multi-types of SATDs can better analyze
the distribution of debt and investigate the causes of debt [74]. More-
over, it helps to analyze the impact of SATD on software quality [75],
the understanding of the action, the motivation for deleting SATD
in software systems [76,77], and the retention time of SATD [8]. In
addition, our work helps to study the interest paid on SATD [78].

7. Threats to validity

7.1. Threats to internal validity

Threats to internal validity derive from programming errors during
the experiments and personal bias related to the label in the dataset.
Our model is implemented based on Pytorch and third-party libraries to
avoid programming errors. All baseline methods are also implemented
based on PyTorch and third-party libraries, and we carefully modify
the codes provided by previous studies to satisfy our needs. To reduce
personal bias in the manually labeled dataset, we use the dataset
by [27] with a high inter-rater agreement (Cohen’s Kappa coefficient
of 0.81). Moreover, hyper-parameter tuning poses a threat to internal
validity. To reduce the threat, we fine-tune the learning rate of {1e-5,
5e-5, 1e-4, 5e-4} and the batch size of {32, 64, 128, 256}, in which we
choose the best parameter settings, i.e., the learning rate of 1e-4 and
batch size of 128 for our experiments.

7.2. Threats to external validity

Threats to external validity are focused on the generalizability of
our model. We study our experiments on a publicly reliable dataset
by [27]. The dataset contains 10 open source projects with 62,566
code comments. These 10 open source projects are characterized by
different functions, different contributors, and the different number
of comments. Moreover, it is a public dataset, which can help future
researchers replicate our results. We realized that it would be better to
validate our model with other project data from more diverse domains,
and we left the exploration for future work. In addition, we selected
the state-of-the-art SATD three classification model XGBoost and seven
deep learning-based methods as baseline methods that have achieved
satisfactory performance in previous studies.

7.3. Threats to construct validity

Threats to construct validity are related to the employed perfor-
mance indicators and applicability. In this work, we use three widely
used performance indicators, namely, Precision, Recall, and F-score, to
evaluate the performance of our model. In addition, we employ a set of
specific indicators, including Precision-weight, Recall-weight, F-weight,
MCC, and each SATD type performance (i.e., Precision, Recall, and F-
score), to evaluate the performance of our model on imbalanced data.
We adopt Wilcoxon signed-rank test and Cliff’s delta for analysis of
method pairs, which makes our evaluation more convincing. Another
threat to construct validity is related to the suitability of our model. Our
work aims to determine which SATD category a code comment belongs
to, intending to find the type of SATD from code comments to satisfy
the need to locate different debts for developers. The experimental
results demonstrate the superiority of the model and show that it
applies to such tasks.

Information and Software Technology 158 (2023) 107190J. Yu et al.

b
w
d
p
c
c
c

8

t
i
u
T
l
b
t
e
a
o
r
m
m
m

C

X
t
a
–

D

p
e
e
c
h
s

D

Fig. 6. The error predicted instances in JMeter.
On the other hand, there is also related research on the relationship
etween debt interest and repayment costs [78]. Different from such
ork, we input code comments into our trained model to automatically
etect a specific SATD type. The cost of this process is negligible com-
ared to the interest brought by the debt itself. Of course, repayment
ost and interest are very important research. In the future, we will
onduct in-depth related research on the combination of repayment
ost and debt interest [79] for identifying debt and deleting debt.

. Conclusion

In this work, we proposed a new GCF model to determine which
ype of technical debt a comment containing SATD belongs to. Specif-
cally, GCF first uses the JSD-GAN model to address the problem of
nimpressive classification performance due to unbalanced datasets.
he CodeBERT model, fusing information in code snippets and natural

anguage, was then employed to convert the instances into the em-
edding vector. A feature extraction module was also designed to take
he embedding vector as input and conduct global feature fusion and
xtraction of the embedding vector through the global feature encoder
nd key feature extraction. We conducted comprehensive experiments
n the public dataset using three performance indicators, and the
esults showed that our proposed GCF model outperformed the baseline
ethods including the state-of-the-art. In the future, we plan to collect
ore real SATD comments to validate the generalization ability of our
odel.

RediT authorship contribution statement

Jiaojiao Yu: Writing – original draft, Methodology, Data curation.
u Zhou: Methodology, Software, Visualization. Xiao Liu: Concep-

ualization, Writing – review & editing. Jin Liu: Supervision, Project
dministration. Zhiwen Xie: Formal analysis. Kunsong Zhao: Writing
review & editing.

eclaration of competing interest

One or more of the authors of this paper have disclosed potential or
ertinent conflicts of interest, which may include receipt of payment,
ither direct or indirect, institutional support, or association with an
ntity in the biomedical field which may be perceived to have potential
onflict of interest with this work. For full disclosure statements refer to
ttps://doi.org/10.1016/j.infsof.2023.107190. Jin Liu reports financial
upport was provided by Wuhan University.

ata availability

Data will be made available on request.
13
Acknowledgments

This work was supported by the National Natural Science Founda-
tion of China under Grants (No. 61972290).

References

[1] N. Brown, Y. Cai, Y. Guo, R. Kazman, M. Kim, P. Kruchten, E. Lim, A.
MacCormack, R. Nord, I. Ozkaya, et al., Managing technical debt in software-
reliant systems, in: Proceedings of the FSE/SDP Workshop on Future of Software
Engineering Research, 2010, pp. 47–52.

[2] Z. Codabux, B. Williams, Managing technical debt: An industrial case study, in:
2013 4th International Workshop on Managing Technical Debt, MTD, IEEE, 2013,
pp. 8–15.

[3] S. Freire, N. Rios, B. Gutierrez, D. Torres, M. Mendonça, C. Izurieta, C. Seaman,
R.O. Spínola, Surveying software practitioners on technical debt payment prac-
tices and reasons for not paying off debt items, in: Proceedings of the Evaluation
and Assessment in Software Engineering, 2020, pp. 210–219.

[4] A. Potdar, E. Shihab, An exploratory study on self-admitted technical debt, in:
2014 IEEE International Conference on Software Maintenance and Evolution,
ICSME, IEEE, 2014, pp. 91–100.

[5] A. Ampatzoglou, A. Ampatzoglou, A. Chatzigeorgiou, P. Avgeriou, The financial
aspect of managing technical debt: A systematic literature review, Inf. Softw.
Technol. 64 (2015) 52–73.

[6] G. Bavota, B. Russo, A large-scale empirical study on self-admitted technical
debt, in: Proceedings of the 13th International Conference on Mining Software
Repositories, 2016, pp. 315–326.

[7] Y. Li, M. Soliman, P. Avgeriou, L. Somers, Self-admitted technical debt in the
embedded systems industry: An exploratory case study, 2022, arXiv preprint
arXiv:2205.13872.

[8] E.d.S. Maldonado, R. Abdalkareem, E. Shihab, A. Serebrenik, An empirical study
on the removal of self-admitted technical debt, in: 2017 IEEE International
Conference on Software Maintenance and Evolution, ICSME, IEEE, 2017, pp.
238–248.

[9] J. Xuan, Y. Hu, H. Jiang, Debt-prone bugs: technical debt in software
maintenance, 2017, arXiv preprint arXiv:1704.04766.

[10] Q. Huang, E. Shihab, X. Xia, D. Lo, S. Li, Identifying self-admitted technical debt
in open source projects using text mining, Empir. Softw. Eng. 23 (1) (2018)
418–451.

[11] N.S. Alves, T.S. Mendes, M.G. de Mendonça, R.O. Spínola, F. Shull, C. Seaman,
Identification and management of technical debt: A systematic mapping study,
Inf. Softw. Technol. 70 (2016) 100–121.

[12] H. Tu, T. Menzies, DebtFree: minimizing labeling cost in self-admitted technical
debt identification using semi-supervised learning, Empir. Softw. Eng. 27 (4)
(2022) 1–37.

[13] L. Huang, D. Ma, S. Li, X. Zhang, H. Wang, Text level graph neural network for
text classification, 2019, arXiv preprint arXiv:1910.02356.

[14] Y. Kim, Convolutional neural networks for sentence classification, in: Proceedings
of the 2014 Conference on Empirical Methods in Natural Language Processing,
EMNLP, Association for Computational Linguistics (ACL), 2014, pp. 1746–1751.

[15] S. Lai, L. Xu, K. Liu, J. Zhao, Recurrent convolutional neural networks for text
classification, in: Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015.

[16] X. Ren, Z. Xing, X. Xia, D. Lo, X. Wang, J. Grundy, Neural network-based
detection of self-admitted technical debt: From performance to explainability,
ACM Trans. Softw. Eng. Methodol. 28 (3) (2019) 1–45.

https://doi.org/10.1016/j.infsof.2023.107190
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb1
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb1
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb1
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb1
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb1
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb1
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb1
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb2
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb2
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb2
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb2
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb2
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb3
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb3
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb3
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb3
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb3
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb3
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb3
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb4
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb4
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb4
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb4
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb4
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb5
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb5
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb5
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb5
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb5
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb6
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb6
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb6
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb6
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb6
http://arxiv.org/abs/2205.13872
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb8
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb8
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb8
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb8
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb8
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb8
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb8
http://arxiv.org/abs/1704.04766
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb10
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb10
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb10
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb10
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb10
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb11
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb11
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb11
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb11
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb11
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb12
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb12
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb12
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb12
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb12
http://arxiv.org/abs/1910.02356
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb14
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb14
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb14
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb14
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb14
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb15
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb15
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb15
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb16
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb16
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb16
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb16
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb16

Information and Software Technology 158 (2023) 107190J. Yu et al.
[17] X. Wang, J. Liu, L. Li, X. Chen, X. Liu, H. Wu, Detecting and explaining
self-admitted technical debts with attention-based neural networks, in: Proceed-
ings of the 35th IEEE/ACM International Conference on Automated Software
Engineering, 2020, pp. 871–882.

[18] M.E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, L. Zettle-
moyer, Deep contextualized word representations, in: Proceedings of the 2018
Conference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies, NAACL-HLT, Volume 1 (Long
Papers), Association for Computational Linguistics, 2018, pp. 2227–2237.

[19] X. Chen, D. Yu, X. Fan, L. Wang, J. Chen, Multiclass classification for
self-admitted technical debt based on xgboost, IEEE Trans. Reliab. (2021).

[20] G. Sierra, E. Shihab, Y. Kamei, A survey of self-admitted technical debt, J. Syst.
Softw. 152 (2019) 70–82.

[21] B. Bansal, S. Srivastava, Sentiment classification of online consumer reviews
using word vector representations, Procedia Comput. Sci. 132 (2018) 1147–1153.

[22] Q. Le, T. Mikolov, Distributed representations of sentences and documents,
in: International Conference on Machine Learning, ICML, PMLR, 2014, pp.
1188–1196.

[23] K. Torkkola, Discriminative features for text document classification, Formal
Pattern Anal. Appl. 6 (4) (2004) 301–308.

[24] J. Yu, K. Zhao, J. Liu, X. Liu, Z. Xu, X. Wang, Exploiting gated graph neural
network for detecting and explaining self-admitted technical debts, J. Syst. Softw.
187 (2022) 111219.

[25] Z. Li, T. Xia, X. Lou, K. Xu, S. Wang, J. Xiao, Adversarial discrete sequence
generation without explicit neuralnetworks as discriminators, in: The 22nd
International Conference on Artificial Intelligence and Statistics, PMLR, 2019,
pp. 3089–3098.

[26] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin, T. Liu,
D. Jiang, et al., Codebert: A pre-trained model for programming and natural
languages, 2020, arXiv preprint arXiv:2002.08155.

[27] E. da Silva Maldonado, E. Shihab, N. Tsantalis, Using natural language processing
to automatically detect self-admitted technical debt, IEEE Trans. Softw. Eng. 43
(11) (2017) 1044–1062.

[28] M.A. de Freitas Farias, M.G. de Mendonça Neto, M. Kalinowski, R.O. Spínola,
Identifying self-admitted technical debt through code comment analysis with a
contextualized vocabulary, Inf. Softw. Technol. 121 (2020) 106270.

[29] Z. Guo, S. Liu, J. Liu, Y. Li, L. Chen, H. Lu, Y. Zhou, How far have we progressed
in identifying self-admitted technical debts? A comprehensive empirical study,
ACM Trans. Softw. Eng. Methodol. 30 (4) (2021) 1–56.

[30] Z. Liu, Q. Huang, X. Xia, E. Shihab, D. Lo, S. Li, SATD detector: A text-mining-
based self-admitted technical debt detection tool, in: Proceedings of the 40th
ACM/IEEE International Conference on Software Engineering, vol. 3, ICSE, 2013,
pp. 9–12.

[31] Z. Yu, F.M. Fahid, H. Tu, T. Menzies, Identifying self-admitted technical debts
with jitterbug: A two-step approach, IEEE Trans. Softw. Eng. (2020).

[32] D. Yu, L. Wang, X. Chen, J. Chen, Using BiLSTM with attention mechanism
to automatically detect self-admitted technical debt, Front. Comput. Sci. 15 (4)
(2021) 1–12.

[33] S. Wattanakriengkrai, R. Maipradit, H. Hata, M. Choetkiertikul, T. Sunetnanta,
K. Matsumoto, Identifying design and requirement self-admitted technical debt
using n-gram idf, in: 2018 9th International Workshop on Empirical Software
Engineering in Practice, IWESEP, IEEE, 2018, pp. 7–12.

[34] M. Yan, X. Xia, E. Shihab, D. Lo, J. Yin, X. Yang, Automating change-level self-
admitted technical debt determination, IEEE Trans. Softw. Eng. 45 (12) (2018)
1211–1229.

[35] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A.
Courville, Y. Bengio, Generative adversarial nets, Adv. Neural Inf. Process. Syst.
27 (2014).

[36] M. Arjovsky, S. Chintala, L. Bottou, Wasserstein generative adversarial networks,
in: International Conference on Machine Learning, PMLR, 2017, pp. 214–223.

[37] C. Wang, C. Xu, X. Yao, D. Tao, Evolutionary generative adversarial networks,
IEEE Trans. Evol. Comput. 23 (6) (2019) 921–934.

[38] J. Guo, S. Lu, H. Cai, W. Zhang, Y. Yu, J. Wang, Long text generation
via adversarial training with leaked information, in: Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 32, no. 1, 2018.

[39] X. Yu, J. Keung, Y. Xiao, S. Feng, F. Li, H. Dai, Predicting the precise number
of software defects: Are we there yet? Inf. Softw. Technol. 146 (2022) 106847.

[40] X. Yu, J. Liu, J.W. Keung, Q. Li, K.E. Bennin, Z. Xu, J. Wang, X. Cui, Improving
ranking-oriented defect prediction using a cost-sensitive ranking SVM, IEEE
Trans. Reliab. 69 (1) (2019) 139–153.

[41] S. Feng, J. Keung, X. Yu, Y. Xiao, M. Zhang, Investigation on the stability of
SMOTE-based oversampling techniques in software defect prediction, Inf. Softw.
Technol. 139 (2021) 106662.

[42] Y. Zhen, J.W. Keung, Y. Xiao, X. Yan, J. Zhi, J. Zhang, On the significance of
category prediction for code-comment synchronization, ACM Trans. Softw. Eng.
Methodol. (2022).

[43] X. Ma, J. Keung, Z. Yang, X. Yu, Y. Li, H. Zhang, CASMS: Combining clustering
with attention semantic model for identifying security bug reports, Inf. Softw.
Technol. 147 (2022) 106906.
14
[44] J.W. Wei, Z. Kai, EDA: easy data augmentation techniques for boosting perfor-
mance on text classification tasks, in: Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing, EMNLP-IJCNLP, Association
for Computational Linguistics (ACL), 2019, pp. 6381–6387.

[45] K. Akbar, R. Leonardo, P. Andrea, AEDA: an easier data augmentation tech-
nique for text classification, in: Findings of the Association for Computational
Linguistics: EMNLP, Association for Computational Linguistics (ACL), 2021, pp.
2748–2754.

[46] Y. Cao, X. Wan, Divgan: Towards diverse paraphrase generation via diversified
generative adversarial network, in: Findings of the Association for Computational
Linguistics: EMNLP 2020, 2020, pp. 2411–2421.

[47] L. Liu, Y. Lu, M. Yang, Q. Qu, J. Zhu, H. Li, Generative adversarial network
for abstractive text summarization, in: Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 32, no. 1, 2018.

[48] J. Zhao, Z. Zhan, T. Li, R. Li, C. Hu, S. Wang, Y. Zhang, Generative adversarial
network for table-to-text generation, Neurocomputing 452 (2021) 28–36.

[49] T. Karras, S. Laine, T. Aila, A style-based generator architecture for generative
adversarial networks, in: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2019, pp. 4401–4410.

[50] H. Zhang, I. Goodfellow, D. Metaxas, A. Odena, Self-attention generative adver-
sarial networks, in: International Conference on Machine Learning, ICML, PMLR,
2019, pp. 7354–7363.

[51] X. Gao, F. Deng, X. Yue, Data augmentation in fault diagnosis based
on the Wasserstein generative adversarial network with gradient penalty,
Neurocomputing 396 (2020) 487–494.

[52] M. Zheng, T. Li, R. Zhu, Y. Tang, M. Tang, L. Lin, Z. Ma, Conditional Wasserstein
generative adversarial network-gradient penalty-based approach to alleviating
imbalanced data classification, Inform. Sci. 512 (2020) 1009–1023.

[53] X. Zhou, D. Han, D. Lo, Assessing generalizability of CodeBERT, in: 2021 IEEE
International Conference on Software Maintenance and Evolution, ICSME, IEEE,
2021, pp. 425–436.

[54] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, Ł. Kaiser,
I. Polosukhin, Attention is all you need, Adv. Neural Inf. Process. Syst. 30 (2017).

[55] Z. Xu, L. Li, M. Yan, J. Liu, X. Luo, J. Grundy, Y. Zhang, X. Zhang, A com-
prehensive comparative study of clustering-based unsupervised defect prediction
models, J. Syst. Softw. 172 (2021) 110862.

[56] Z. Xu, K. Zhao, M. Yan, P. Yuan, L. Xu, Y. Lei, X. Zhang, Imbalanced metric
learning for crashing fault residence prediction, J. Syst. Softw. 170 (2020)
110763.

[57] K. Zhao, J. Liu, Z. Xu, X. Liu, L. Xue, Z. Xie, Y. Zhou, X. Wang, Graph4Web:
A relation-aware graph attention network for web service classification, J. Syst.
Softw. 190 (2022) 111324.

[58] Y. Chen, S. Xiong, L. Mou, X.X. Zhu, Deep quadruple-based hashing for remote
sensing image-sound retrieval, IEEE Trans. Geosci. Remote Sens. 60 (2022) 1–14.

[59] C. He, J. Wu, Q. Zhang, Proximity-aware research leadership recommendation
in research collaboration via deep neural networks, J. Assoc. Inf. Sci. Technol.
73 (1) (2022) 70–89.

[60] Y. Chen, X. Lu, S. Wang, Deep cross-modal image–voice retrieval in remote
sensing, IEEE Trans. Geosci. Remote Sens. 58 (10) (2020) 7049–7061.

[61] Z. Yang, J. Keung, M.A. Kabir, X. Yu, Y. Tang, M. Zhang, S. Feng, AComNN: At-
tention enhanced Compound Neural Network for financial time-series forecasting
with cross-regional features, Appl. Soft Comput. 111 (2021) 107649.

[62] C. He, J. Wu, Q. Zhang, Characterizing research leadership on geographically
weighted collaboration network, Scientometrics 126 (5) (2021) 4005–4037.

[63] Y. Chen, X. Lu, X. Li, Supervised deep hashing with a joint deep network, Pattern
Recognit. 105 (2020) 107368.

[64] F. Wilcoxon, Individual comparisons by ranking methods, in: Breakthroughs in
Statistics, Springer, 1992, pp. 196–202.

[65] K. Zhao, Z. Xu, T. Zhang, Y. Tang, M. Yan, Simplified deep forest model based
just-in-time defect prediction for android mobile apps, IEEE Trans. Reliab. 70
(2) (2021) 848–859.

[66] J. Pennington, R. Socher, C.D. Manning, Glove: Global vectors for word represen-
tation, in: Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing, EMNLP, 2014, pp. 1532–1543.

[67] S. Zhang, D. Zheng, X. Hu, M. Yang, Bidirectional long short-term memory
networks for relation classification, in: Proceedings of the 29th Pacific Asia
Conference on Language, Information and Computation, 2015, pp. 73–78.

[68] P. Zhou, W. Shi, J. Tian, Z. Qi, B. Li, H. Hao, B. Xu, Attention-based bidirectional
long short-term memory networks for relation classification, in: Proceedings
of the 54th Annual Meeting of the Association for Computational Linguistics
(Volume 2: Short Papers), 2016, pp. 207–212.

[69] J. Chung, C. Gulcehre, K. Cho, Y. Bengio, Empirical evaluation of gated recurrent
neural networks on sequence modeling, 2014, arXiv preprint arXiv:1412.3555.

[70] N. Weili, N. Nina, P. Ankit, RelGAN: Relational generative adversarial networks
for text generation, in: 7th International Conference on Learning Representations,
ICLR 2019, New Orleans, la, USA, May 6–9, 2019, OpenReview.net, 2019.

[71] C. Tong, L. Yanran, Z. Ruixiang, H. R. Devon, L. Wenjie, B. Yangqiu, Maximum-
likelihood augmented discrete generative adversarial networks, 2017, CoRR
arXiv:1702.07983.

http://refhub.elsevier.com/S0950-5849(23)00044-7/sb17
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb17
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb17
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb17
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb17
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb17
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb17
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb18
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb18
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb18
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb18
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb18
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb18
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb18
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb18
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb18
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb19
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb19
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb19
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb20
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb20
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb20
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb21
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb21
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb21
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb22
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb22
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb22
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb22
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb22
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb23
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb23
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb23
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb24
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb24
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb24
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb24
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb24
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb25
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb25
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb25
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb25
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb25
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb25
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb25
http://arxiv.org/abs/2002.08155
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb27
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb27
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb27
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb27
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb27
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb28
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb28
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb28
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb28
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb28
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb29
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb29
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb29
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb29
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb29
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb30
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb30
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb30
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb30
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb30
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb30
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb30
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb31
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb31
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb31
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb32
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb32
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb32
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb32
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb32
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb33
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb33
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb33
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb33
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb33
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb33
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb33
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb34
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb34
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb34
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb34
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb34
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb35
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb35
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb35
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb35
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb35
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb36
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb36
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb36
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb37
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb37
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb37
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb38
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb38
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb38
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb38
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb38
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb39
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb39
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb39
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb40
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb40
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb40
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb40
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb40
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb41
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb41
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb41
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb41
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb41
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb42
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb42
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb42
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb42
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb42
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb43
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb43
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb43
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb43
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb43
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb44
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb44
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb44
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb44
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb44
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb44
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb44
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb44
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb44
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb45
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb45
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb45
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb45
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb45
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb45
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb45
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb46
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb46
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb46
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb46
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb46
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb47
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb47
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb47
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb47
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb47
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb48
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb48
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb48
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb49
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb49
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb49
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb49
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb49
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb50
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb50
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb50
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb50
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb50
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb51
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb51
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb51
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb51
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb51
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb52
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb52
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb52
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb52
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb52
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb53
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb53
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb53
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb53
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb53
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb54
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb54
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb54
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb55
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb55
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb55
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb55
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb55
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb56
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb56
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb56
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb56
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb56
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb57
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb57
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb57
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb57
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb57
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb58
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb58
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb58
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb59
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb59
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb59
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb59
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb59
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb60
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb60
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb60
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb61
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb61
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb61
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb61
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb61
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb62
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb62
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb62
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb63
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb63
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb63
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb64
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb64
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb64
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb65
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb65
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb65
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb65
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb65
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb66
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb66
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb66
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb66
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb66
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb67
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb67
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb67
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb67
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb67
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb68
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb68
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb68
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb68
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb68
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb68
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb68
http://arxiv.org/abs/1412.3555
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb70
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb70
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb70
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb70
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb70
http://arxiv.org/abs/1702.07983

Information and Software Technology 158 (2023) 107190J. Yu et al.
[72] Y. Lantao, Z. Weinan, W. Jun, Y. Yong, SeqGAN: Sequence generative adversarial
nets with policy gradient, in: Proceedings of the Thirty-First AAAI Conference on
Artificial Intelligence,February 4–9, 2017, San Francisco, California, USA, AAAI
Press, 2017, pp. 2852–2858.

[73] M. Ehsan, A. Danial, B. Mahdieh Soleymani, DGSAN: Discrete generative
self-adversarial network, Neurocomputing 448 (2021) 364–379.

[74] N.S. Alves, L.F. Ribeiro, V. Caires, T.S. Mendes, R.O. Spínola, Towards an
ontology of terms on technical debt, in: 2014 Sixth International Workshop on
Managing Technical Debt, IEEE, 2014, pp. 1–7.

[75] Y. Miyake, S. Amasaki, H. Aman, T. Yokogawa, A replicated study on relationship
between code quality and method comments, in: Applied Computing and
Information Technology, Springer, 2017, pp. 17–30.
15
[76] C. Vassallo, F. Zampetti, D. Romano, M. Beller, A. Panichella, M. Di Penta, A.
Zaidman, Continuous delivery practices in a large financial organization, in: 2016
IEEE International Conference on Software Maintenance and Evolution, ICSME,
IEEE, 2016, pp. 519–528.

[77] F. Zampetti, A. Serebrenik, M. Di Penta, Was self-admitted technical debt removal
a real removal? An in-depth perspective, in: 2018 IEEE/ACM 15th International
Conference on Mining Software Repositories, MSR, IEEE, 2018, pp. 526–536.

[78] Y. Kamei, E.d.S. Maldonado, E. Shihab, N. Ubayashi, Using analytics to quantify
interest of self-admitted technical debt, in: QuASoQ/TDA@ APSEC, 2016, pp.
68–71.

[79] G. Deshpande, G. Ruhe, Beyond accuracy: Roi-driven data analytics of empirical
data, in: Proceedings of the 14th ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement, ESEM, 2020, pp. 1–6.

http://refhub.elsevier.com/S0950-5849(23)00044-7/sb72
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb72
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb72
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb72
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb72
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb72
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb72
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb73
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb73
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb73
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb74
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb74
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb74
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb74
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb74
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb75
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb75
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb75
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb75
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb75
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb76
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb76
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb76
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb76
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb76
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb76
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb76
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb77
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb77
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb77
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb77
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb77
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb78
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb78
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb78
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb78
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb78
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb79
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb79
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb79
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb79
http://refhub.elsevier.com/S0950-5849(23)00044-7/sb79

	Detecting multi-type self-admitted technical debt with generative adversarial network-based neural networks
	Introduction
	Motivation
	Our Work
	Contributions
	Paper Organization

	Related Work
	SATD Identification
	Generative Adversarial Networks

	Proposed Method
	Framework Overview
	Data Enhancement
	Embedding Vector Initialization
	Feature Extraction Module
	Model Training and Test

	Experimental Setup
	Dataset
	Performance indicators
	Statistic Test
	Parameter settings
	Research questions

	Experimental Results
	RQ1: Is our proposed model outperforming the state-of-the-art methods?
	RQ2: Is our model better than its variants?
	RQ3: Does our model perform better than other methods of generating adversarial networks to balance samples?

	Discussion
	The impact of different parameter settings
	Error Analysis
	Implications

	Threats to Validity
	Threats to internal validity
	Threats to external validity
	Threats to construct validity

	Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References

