
DeepInfer: Deep Type Inference from Smart Contract Bytecode

Kunsong Zhao
The Hong Kong Polytechnic

University

China

kunsong.zhao@connect.polyu.hk

Zihao Li
The Hong Kong Polytechnic

University

China

cszhli@comp.polyu.edu.hk

Jianfeng Li
Xi’an Jiaotong University

China

j�i.xjtu@gmail.com

He Ye
KTH Royal Institute of Technology

Sweden

heye@kth.se

Xiapu Luo∗

The Hong Kong Polytechnic

University

China

csxluo@comp.polyu.edu.hk

Ting Chen∗

University of Electronic Science and

Technology of China

China

brokendragon@uestc.edu.cn

ABSTRACT

Smart contracts play an increasingly important role in Ethereum

platform. It provides various functions implementing numerous

services, whose bytecode runs on Ethereum Virtual Machine. To

use services by invoking corresponding functions, the callers need

to know the function signatures. Moreover, such signatures pro-

vide crucial information for many downstream applications, e.g.,

identifying smart contracts, fuzzing, detecting vulnerabilities, etc.

However, it is challenging to infer function signatures from the

bytecode due to a lack of type information. Existing work solv-

ing this problem depended heavily on limited databases or hard-

coded heuristic patterns. However, these approaches are hard to be

adapted to semantic di�erences in distinct languages and various

compiler versions when developing smart contracts. In this paper,

we propose a novel framework DeepInfer that �rst leverages deep

learning techniques to automatically infer function signatures and

returns. The novelties of DeepInfer are: 1) DeepInfer lifts the byte-

code into the Intermediate Representation (IR) to preserve code

semantics; 2) DeepInfer extracts the type-related knowledge (e.g.,

critical data �ows, constant values, and control �ow graphs) from

the IR to recover function signatures and returns. We conduct ex-

periments on Solidity and Vyper smart contracts and the results

show that DeepInfer performs faster and more accurate than exist-

ing tools, while being immune to changes in di�erent languages

and various compiler versions.

CCS CONCEPTS

• Security and privacy→ Software reverse engineering.

KEYWORDS

Smart Contract, Type Inference, Deep Learning

∗Corresponding authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0327-0/23/12. . . $15.00
https://doi.org/10.1145/3611643.3616343

ACM Reference Format:

Kunsong Zhao, Zihao Li, Jianfeng Li, He Ye, Xiapu Luo, and Ting Chen.

2023. DeepInfer: Deep Type Inference from Smart Contract Bytecode. In

Proceedings of the 31st ACM Joint European Software Engineering Conference

and Symposium on the Foundations of Software Engineering (ESEC/FSE ’23),

December 3–9, 2023, San Francisco, CA, USA. ACM, New York, NY, USA,

13 pages. https://doi.org/10.1145/3611643.3616343

1 INTRODUCTION

Cryptocurrencies have shown a prevalent trend in both industry

and academia in recent years. With the emergence of Ethereum [45],

one of the largest decentralized platform, programmable cryptocur-

rency services enter a new era [11, 12, 29, 34, 62]. Smart contracts,

as the key component of Ethereum, enable developers and users

release cryptocurrencies, deploy applications, and utilize services

on the Ethereum blockchain without the intervention of the trusted

third parties [2, 33, 59, 70]. A smart contract is implemented by

high-level languages (e.g., Solidity [52] and Vyper [58]), then com-

piled into the bytecode executed on Ethereum Virtual Machine

(EVM), and �nally deployed on Ethereum. The functions of a smart

contract will be registered as the Application Binary Interface (ABI),

making others easily invoke and implement their functionalities

[9, 53].

Table 1: An overview of existing studies for recovering func-

tion signatures and returns in smart contracts.

Approach

Scalability Accuracy

Techniques
Languages Compilers Signature Return

EBD [43] - - FSD

Eveem [17] FSD+SA

Gigahorse [21] SA

SigRec [9] SA

DeepInfer DL

Full Partial No support

FSD: Ethereum function signature database, SA: static analysis, DL: deep learning

The ABI consists of function signatures and returns. When in-

voking a function, users need to know the signatures because it

de�nes the calling rules [53]. Function signatures comprise a func-

tion id and a list of parameter types in which function id is derived

from the �rst 4 bytes of the Keccak-256 hash result of a function

name and the corresponding list of parameter types in source code

745

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3611643.3616343
https://doi.org/10.1145/3611643.3616343

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Kunsong Zhao, Zihao Li, Jianfeng Li, He Ye, Xiapu Luo, and Ting Chen

[53]. Moreover, the function returns specify the format of return

values of the function [53]. Identifying function signatures and re-

turns is a crucial step to analyze the behavior of a function in smart

contracts because one needs to �rst know how a function is called

and what is returned before the evaluation. For example, previous

studies adopted function signatures to recognize di�erent types of

smart contracts [5, 13, 16, 19, 24] and utilized function arguments

to generate more mutant test cases to facilitate the fuzzing tools for

detecting more vulnerabilities [9, 23, 27]. Moreover, checking re-

turns of a function can avoid vulnerabilities, such as the unchecked

call return value weakness [54].

Problem: function signatures and returns are black boxes

for users. This is because nearly 99% of the deployed contracts

are closed-source [18, 26]. The arguments of function signatures

and returns are represented as the 256-bit words without the type

information and debug information in the bytecode, which makes

it hard to be recovered [1]. As shown in Table 1, some studies

contribute to recovering function signatures in smart contracts. For

example, EVM Bytecode Decompiler (EBD) [43] searches function

signatures from their Ethereum Function Signature Database (FSD).

Eveem [17] and Gigahorse [21] rely on the hard-coded heuristics to

restore function signatures in which Eveem also incorporates the

knowledge from the FSD. Chen et al. [9] proposed a static analysis-

based tool SigRec that manually designed 31 heuristic patterns

according to the access rules for di�erent parameter types in the

EVM and employed the symbolic execution technique to recover

function signatures from the bytecode of a smart contract.

Unfortunately, these approaches still su�er from the following

limitations.

Limitation 1 (L1): The existing methods for the function sig-

nature recovery heavily depend on either an incomplete database

involving a fraction of functions in the wild [9] or restricted match-

ing patterns designed by human experts. The limited database is

hard to cover all the functions on Ethereum, where as the �xed

matching patterns will be invalid when the smart contracts are

developed by new programming languages with the evolution of

the Ethereum ecosystems.

Limitation 2 (L2): Despite the existing tool designing a set of

arguments access rules that has shown the ability to recovering

types of arguments, its accuracy is still less than satisfactory, espe-

cially when the access patterns encounter even a slight change due

to the compiler version upgrades.

Limitation 3 (L3): All the existing studies merely focus on

recovering function signatures but the inference of the returns of a

function is ignored. Since the aim of smart contracts is to execute

transactions on Ethereum platform, both the signatures and returns

of a contract function are indispensable components for analyzing

the functionality and checking whether some desired operations

are performed correctly [39, 42].

With deep learning techniques achieving promising results over

traditional pattern-based methods in many software engineering

tasks [49, 61, 68], one can leverage these data-driven techniques to

learn implicit knowledge to infer function signatures and returns.

However, it is challenging to design deep learning-based inference

models for this purpose.

Challenge 1 (C1): The inference model needs to automatically

learn how di�erent types of arguments are operated in the EVM

bytecode rather than ponderously depends on the function database

or manually extracts a limited set of access patterns focusing on

speci�c languages. This requires that the model actually grasps

the di�erences in di�erent types of arguments which are language-

independent.

Challenge 2 (C2): As the compiler version upgrades, the pat-

terns to access the arguments will be changed. This requires that

the model is scalable, i.e., it needs to be free from the characteristics

of various compiler versions.

Challenge 3 (C3): For function signature inference, we can force

the model to understand the access patterns of di�erent types of

arguments and then use such knowledge to predict the signatures

of other functions from a prepared type list. Unfortunately, it is

infeasible for inferring some complex types (e.g., array) because we

cannot determine how the number of nesting layers or dimensions

there should be and restrict it to a limited set of types in advance.

That is, it will su�er from an out-of-vocabulary (OOV) issue [22, 25].

This requires the model to decide which types need to be inferred

from a �nite set of types and which types need to dynamically

determine the nesting depth or dimensions during the inference.

Challenge 4 (C4): Recovering returns is more di�cult than

inferring signatures, because the return values are stored in the

memory and returned at the end of function execution [42, 52]. This

requires the model to be able to understand the semantic of the

whole function rather than a speci�c part. Despite there also exist

some studies for function signature inference in other scenarios

[3, 41, 47], none of them supports type inference from the bytecode

of smart contracts because they target the source code.

In this paper, we present DeepInfer, a novel deep learning-based

framework to automatically recover function signatures and returns

from the EVM bytecode without any human intervention. To make

the model deal with various languages, DeepInfer �rst lifts the

bytecode compiled from di�erent languages into the IR in which the

language-speci�c and compiler-speci�c operations are stripped (C1,

C2). Then, it conducts a de�nition/use analysis to extract critical

information (e.g., data �ows and constant values) that are highly

relevant for the inference of signatures from the IR (§ 3.3). To make

the model have the potential to recover various types of arguments,

we design a two-stage inference framework in which the basic

and complex types are handled individually (§ 2.2). Speci�cally,

DeepInfer recognizes the basic and complex types according to the

knowledge extracted and learned from the IR. For the basic types,

DeepInfer recovers the actual type by selecting the one who has the

maximum probability among the list of prede�ned types collected

from the o�cial documentations because of the limited number of

types (§ 3.4). Since the complex types cannot be restricted in a �nite

set due to the above-mentioned OOV issue, DeepInfer employs a

sequence generation model to dynamically generate the possible

structure of such types according to the knowledge learnt from

the critical information (§ 3.5) (C3). To recover returns, DeepInfer

constructs the control �ow graph (CFG) that captures the function

semantic by means of the structured graph representation from the

IR and employs the graph neural network to excavate the implicit

semantic knowledge, aiming at promoting the model to understand

the functionality (§ 3.6) (C4).

We conduct experiments on open-source smart contracts writ-

ten by Solidity and Vyper. We collect unique functions from these

746

DeepInfer : Deep Type Inference from Smart Contract Bytecode ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

open-source smart contracts and use them to evaluate the accuracy

of DeepInfer. The experimental results show that, overall, DeepInfer

obtains the top-5 accuracy of 0.980 and 0.937 for signature inference

in both Solidity and Vyper smart contracts, respectively. Compared

with the baselines in Table 1, DeepInfer obtains an average accu-

racy improvement by 117.1% for recovering function signatures.

Moreover, DeepInfer achieves the top-5 accuracy of 0.968 and 0.924

for recovering function returns, respectively. Further experiments

show that DeepInfer performs more than 24 times faster than base-

line methods. Meanwhile, DeepInfer is not a�ected by di�erent

languages and various compiler versions.

In summary, this paper makes the following major contributions:

• We develop DeepInfer, a novel framework that extracts and learns

function access-related information from the lifted three-address

code to recover function signatures. Moreover, DeepInfer is able

to understand code semantics for recovering function returns.

• We conduct comprehensive experiments on real-world smart

contracts written by Solidity andVyper, and evaluate the accuracy

of DeepInfer. The results show that DeepInfer obtains an average

accuracy improvement by 117.1% compared to the existing tools

for recovering function signatures. DeepInfer also has the unique

potential to recover function returns and is immune to changes

in di�erent languages and various compiler versions.

• DeepInfer is the �rst work on recovering function signatures and

returns from EVM bytecode based on deep learning inference, to

the best of our knowledge. On the contrary to the state-of-the-art

work [9], our process is done in a fully automatic manner without

any human intervention.

2 BACKGROUND

2.1 Ethereum & Smart Contracts

Ethereum [45] is a second-generation blockchain-based platform

that provides more �exible distributed computing abilities by incor-

porating smart contracts [28]. There are two types of accounts in

Ethereum blockchain: External Owned Account (EOA) that can be

treated as a wallet keeping assets (e.g., Ether) and smart contract

which is created by either EOA or other smart contracts [14].

Smart contracts are executable programs that can run on the

Ethereum blockchain, which implement various functionalities

satisfying the requirements of end-users. It can be executed in

a completely decentralized manner and does not depend on any

trusted third parties [36]. Smart contracts are written by high-level

programming languages (e.g., Solidity and Vyper) and compiled

into the bytecode executing on the EVM.

2.2 Function Invocation in EVM

The EOA and COA accounts can call a smart contract function by

sending an invocation message that consists of the address of the

smart contract where the invoked function is located and a special

�led call datawhich carries information about the function invoked

and actual arguments [9]. The call data �eld appears as a sequence

of bytes whose �rst 4 bytes refer to the function id and the rest is

the arguments [53]. For example, to invoke the function shown in

Listing 1, the call data �eld starts from the corresponding function

id 0xea7cabdd followed by two speci�c types of arguments: _tokenId

(a one-dimensional dynamic array) and owner (an address).

There are two instructions read arguments from the call data

�eld to EVM, including CALLDATALOAD and CALLDATACOPY . CALLDAT-

ALOAD �rst loads the top element in the stack of EVM and uses it as

the o�set to locate data in the call data �eld. It then loads 32 bytes

data starting from the o�set from the call data [45]. Eventually, the

loaded data is put into the stack of EVM. Di�erent from CALLDAT-

ALOAD that reads a �xed-size data into the stack, CALLDATACOPY loads

a variable-size data from call data to the memory of EVM [45]. It

�rst loads three elements from the top stack, including the memory

location for storing the data, the location of call data for loading the

data, and the length of data to be loaded. There are many supported

types in Solidity and Vyper in their o�cial documentations [52, 58],

which can be treated as basic types and complex types according to

whether one type is enumerable. The basic types include address,

string, struct, bool, bytes, (u)int" (where" ∈ {8, 16, . . . , 256}), and

bytes# (where # ∈ {1, 2, . . . , 32}). The complex types contain vari-

ous arrays that are derived from the basic types except for struct,

but can have variable nesting depth and sizes, such as one/multi-

dimensional array with compile-time �xed or dynamic sizes and

the nested array [52, 58]. Readers can see more access di�erences

of these types in the literature [9, 53].

1 function checkAllOwner(uint256 [] _tokenId , address owner) public
view returns (bool) {

2
3 for(uint i=0;i<_tokenId.length;i++){
4 if(owner != zombieToOwner[_tokenId[i]]){
5 return false;
6 }
7 }
8 return true;
9 }

Listing 1: A function sample with two arguments and one
return whose function id is 0xea7cabdd.

2.3 Motivating Example

Listing 1 illustrates an example of a function deployed in Ethereum.

The function consists of two arguments and one return value in

which the �rst parameter is the dynamic array and the second one is

the address. This function checks whether all tokens in the dynamic

array _tokenId belong to a particular owner and returns true if so,

false otherwise. There are di�erent EVM instructions to load these

two types of parameters. For the second parameter, the EVM �rst

uses a CALLDATALOAD instruction whose operand is the start point

of this parameter in the call data �eld. Then it loads a 32-byte data

and uses an AND instruction for masking to a �xed-length (i.e., 32

bytes) [9, 52]. The masked result is the actual parameter value that

can be used by following instructions. To recover the type of this

parameter, we can make the model learn the operation instructions

involved and constant values that are used for masking, and then

select the type with the maximum probability from a �xed type list

because the basic types are limited as mentioned above.

However, the type inference for the �rst parameter is di�cult be-

cause there is no dimension information of the array in the bytecode

and thus is unknown during the compilation. Assume the actual

parameters of _tokenId in the call data is [0xa, 0xb, 0xc] and the

arrangement of the data is displayed in Fig. 1. The �rst 4 bytes

refer to the function id and the o�set records the start point of

this array. Moreover, num is the size of the actual elements in this

array, followed by their individual real data values (i.e., 0xa, 0xb,

and 0xc). Hence, to access an array element (e.g., 0xb), the EVM

747

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Kunsong Zhao, Zihao Li, Jianfeng Li, He Ye, Xiapu Luo, and Ting Chen

4 bytes 32 bytes 32 bytes

id offset num 0xa 0xb 0xc

Figure 1: The data arrangement of a dynamic array uint256[].

uses two CALLDATALOAD instructions to load the items o�set and

num to identify the start point of this array, followed by another

CALLDATALOAD instruction to obtain the actual value 0xb according

to its address. To infer such types of arguments, DeepInfer designs

a generative deep learning model which has the potential to auto-

matically generate nested structures by learning critical data �ows

and involved constant values. This is because the forms of arrays

are various, such as one/multi-dimensional static/dynamic arrays

and nested arrays, whose nested depths and dimensions cannot be

limited into a �xed set.

On the other hand, recovering the type of the return value is

di�cult because they are stored in memory during EVM running.

Di�erent from the type recovery of signatures that holds explicit

operation instructions to load and access the function arguments,

return values are stored into or loaded from the memory. This

prevents the model from collecting obvious instruction operations.

To infer the return type, we make the model to understand the

functionality of the contract function and determine what is the

type of the return value.

3 FRAMEWORK

3.1 Overview

Fig. 2 demonstrates the overall framework of DeepInfer that takes as

input the EVM bytecode of smart contracts and �nally outputs the

signatures and returns of each function in it. Speci�cally, DeepInfer

�rst lifts the bytecode into IR in which the complex stack opera-

tions are stripped but the useful instruction operations are reserved

in the form of readily comprehensible three-address code. Then,

DeepInfer recognizes all functions from the generated IR according

to the function boundaries (§ 3.2). After that, DeepInfer extracts

function access-related information (such as data�ow features and

constant values) and constructs control �ow graphs (CFG). This

is because the function access-related information indicates how

each parameter is loaded and used in the EVM for recovering func-

tion signatures whereas the CFG is related to understanding the

functionality for recovering function returns (§ 3.3). Based on these

information, DeepInfer trains the deep learning models to recover

the basic types of arguments by building the classi�cation model

(§ 3.4), generates the complex types of arguments by training the

sequence generation model (§ 3.5), and infers the function returns

by understanding the whole functionality (§ 3.6).

3.2 Lifting & Function Recognition

For the input EVM bytecode of a smart contract, DeepInfer �rst uses

Gigahorse [21] to parse the bytecode into the register-based IR (i.e.,

the three-address code) that consists of a clause <opcode, operand1,

operand2, ..., operand= , result> (= > 0), in which the result is the

output of the instruction opcode with the operands (e.g., operand1).

If a variable appears in result, we consider it a variable de�nition

operation. Moreover, if a variable appears in operand, we consider

it is used. Note that each variable can be de�ned only once, i.e.,

it holds a unique value, but can be used multiple times [21]. We

use the IR rather than smart contract bytecode in the following

steps of DeepInfer because it simpli�es stack operations to clauses,

which makes it easy to analyze and extract the access patterns of

function arguments. More speci�cally, DeepInfer �rst recognizes

the JUMP instructions to �nd the boundaries of basic blocks and

then conducts the context-sensitive and �ow-sensitive analysis

to process the register-based IR at the contract level. Besides, it

speculates the entrance and exit of each basic block to recognize

the function boundaries and generates the register-based IR at

the function level. Each basic block is connected to one or more

precursor and successor basic blocks except for the entrance and

exit. The precursors refer to the ones that may be executed before

the execution of a basic block. The successors means the ones

that may be executed after the execution of a basic block. After

generating the register-based IR for a smart contract, DeepInfer uses

a regular expression to extract all the public functions by matching

the function declarations. Next, we introduce how does DeepInfer

extract critical features from such IR for model training.

3.3 Feature Extraction

After obtaining the three-address code of each function, DeepInfer

extracts function access-related features from it. The key insights

here lie in three aspects. First, in order to infer the types of argu-

ments, DeepInfer intensively learns how each parameter is loaded

and used by the instructions. This is a necessary step because dif-

ferent types of parameters are operated by distinct opcodes. For

example, two ISZERO instructions will be used when the loaded pa-

rameter is a bool whereas only the instruction BYTE can be used

to assess each byte data for a parameter with the type byte32 [9].

Thus, DeepInfer proactively learns such access patterns automati-

cally according to the instruction �ows. Second, some types (e.g.,

int) are with di�erent bit sizes which are represented as the mask

value de�ned by the constant values in bytecode. For example, the

type uint8 requires 31 bits of zeros to mask the left side of the data

whereas another type uint248 simply needs 1 bit. Thus, DeepIn-

fer is carefully designed to collect such constant values from the

de�nition of them (§ 3.2). Third, unlike the arguments that utilize

di�erent instructions to access distinct types of parameters, the

return values are stored in the memory and returned after the func-

tion is executed, which means that there are no speci�c instruction

operations. Thus, DeepInfer needs to understand the whole func-

tionality to infer the returns rather than learn the access patterns

from the instruction �ows.

3.3.1 Definition/Use Analysis. The aim of de�nition/use analysis is

to trace a set of relations between variables in which one variable is

used by others. As aforementioned (§ 2), a parameter is accessed by

using either CALLDATALOAD or CALLDATACOPY instruction [9], thus, we

do not need to analyze the de�nitions and uses of all variables. On

the contrary, we fully focus on analyzing the variables containing

the de�nitions or uses of each of the parameters in a function.

We can achieve such variable analysis by using the de�nition/use

analysis based on the parsed IR. Thanks to such IR that assigns

a unique variable name to represent the execution result of each

748

DeepInfer : Deep Type Inference from Smart Contract Bytecode ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

......
Begin block 0x14e
......
0x14e: v14e(...) = CONST
.....
Begin block 0x152
......
0x158: v158 = CALLDATALOAD v140
0x159: v159(...) = CONST
0x16e: v16e = AND v159, v158
......

Bytecode

0x608080604052
60043610156100
1357600080fd5...

Lifting & Function
Recognition (3.2)

Feature
Extraction (3.3)

Signature/Return

Function Return
Recovery (3.6)

Preprocessing

Function Signature
Recovery (3.4 & 3.5)

Recovery

Constant Attention

SoftmaxEd

c1 c2 c3 ck

Ec +

Type

Signature
Inference

outputcls

Ed c1 c2 c3 ck s1

out1

<SOS>

out2 <EOS>

s2 s3 st

out3

copy
generation

Encoder Decoder

...

...

...

Input
Probability

Vocabulary
Probability ...

Signature
Generation

Ed

HFLM

+ local weights

Global Encoder

Local Encoder

+

hij

CDF Embedding

global weights

CFG Embedding

Function Returns
Softmax

Function Return Recovery

CV
 E

m
be

dd
in

g

Marked as
Array?

Control Flow Graph
Recognition

Constant Tracing

Definition/Use Analysis

Figure 2: The overall framework of DeepInfer.

instruction, DeepInfer can search which variable de�nitions contain

the two instructions and treat these variables as the start points,

aiming at collecting the parameter access-related paths. Since the

clauses in the IR will use the assigned variables as the operands,

DeepInfer can recursively look for the clauses whose operands

depend on the variable de�nitions of the two instructions. As a

result, DeepInfer can obtain a set of instruction sequences where

each sequence starts from either CALLDATALOAD or CALLDATACOPY

instruction and we call each instruction sequence the Critical Data

Flow (CDF) in the following.

3.3.2 Constant Tracing. The goal of constant tracing is to collect a

set of constant values that are relevant to types of function argu-

ments. The analysis of de�nitions and uses can generate a set of

CDF starting from CALLDATALOAD or CALLDATACOPY. However, only

using CDFs to build the signature inference model is inadequate

because some types not only use type-related access instructions

but depend on values to determine their sizes (e.g., uint8) or the

dimensions (e.g., address[2]). Such values are also de�ned in the IR

with the keyword CONST . One intuitive solution is to collect all the

de�nitions that contain CONST . However, not all the values de�ned

by CONST are related to the parameter access operations because

some conditional jumps (e.g., JUMPI) or operations that consume

constant values (e.g., CALLDATALOAD) can also involve such values.

To solve this issue, we start with each CDF and collect the variables

that appear in the operands. For each variable, we recursively back-

track to where it is de�ned until the initial clause whose opcode is

the keyword CONST is found. Thus, we collect the corresponding

operand in this clause as the constant value (CV). As a result, we

can obtain a set of CVs for each CDF. By traversing all the CDFs, we

can collect all the constant values associated with the arguments

access operations.

3.3.3 Control Flow Graph Construction. The above features can

be used to determine the access patterns and the corresponding

sizes or dimensions while recovering function signatures. However,

while recovering function returns, there is no related operation

manifestation in the IR because all the return values are stored in

the memory, i.e., there is a lack of explicit instructions for identify-

ing speci�c operations about types that contained in returns. This

requires �nding a representation that not only contains the implicit

characteristics of each function but can also be learned by the deep

learning model. As an alternative, CFG abstractly represents the

possible �ows of all basic blocks in a function using the structured

graph representation. It can re�ect how each statement is executed

during the program running [44, 71]. Besides, the structured pre-

sentation of a CFG also supports the use of the learnable model

to dig for implicit features (i.e., its functionality). These bene�ts

749

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Kunsong Zhao, Zihao Li, Jianfeng Li, He Ye, Xiapu Luo, and Ting Chen

encourage us to extract the CFG from the IR. Because the IR has

been clearly divided into the basic blocks (§ 3.2), we can use regular

expression matching to retrieve these basic blocks and treat each

basic block as the node of a CFG. Besides, we generate the edges of a

CFG by matching the precursors and successors of each basic block.

As a result, we can obtain the structured CFG for each function in

which nodes represent the basic blocks and edges refer to the jump

relationships.

3.4 Function Signature Inference

One aim of DeepInfer is to recover function signatures by learning

how di�erent types of arguments are operated in the bytecode.

There are many types of arguments used in the high-level languages

(e.g., Solidity and Vyper) in which some basic types (e.g., uint, int,

string, bool, etc) can be restricted into a �x-length set because they

are enumerable but other complex types (i.e., array) cannot because

they can hold unlimited dimensions and arbitrary sizes [53, 58].

Thus, we cannot simply treat the signature recovery as a traditional

classi�cation task. To solve this problem, we propose a two-stage

framework that determines di�erent types using distinct strategies.

Speci�cally, we �rst mark types that are not enumerable with a

general sign (i.e., Array) and all the types can be restricted into a

limited type list. Thus, DeepInfer trains a classi�cation model to

determine the type of a parameter by selecting the one with the

maximal prediction probability from this type list. Then, for the

types that are marked as Array, DeepInfer trains another generative

model to generate their actual types. In this subsection, we will

introduce how to construct the classi�cation model to learn the

parameter access patterns and leave the detail of constructing the

generative model in the next subsection (§ 3.5).

3.4.1 CDF Embedding. After extracting a set of CDFs and CVs from

the IR of a function,DeepInfer trains amodel to learn access patterns

of di�erent types of arguments. For the collected CDFs, we retain

the opcodes for model training because opcodes preserve the real

operations during the code execution. Since the obtained opcodes

are not numeric and cannot be used as the input of type recovery

model, DeepInfer �rst trains a Word2Vec model based on these

opcodes to produce the initial embedding vectors. Speci�cally, it

treats the opcodes extracted from a CDF as a sentence and employs

the Continuous Bag of Word (CBOW) technique [40] that predicts

a word (i.e., opcode) using its contextual words to generate an

embedding mapping matrixW.

Since there are multiple CDFs in each function and all of them

together form the access patterns of arguments, inspired by pre-

vious work [66], DeepInfer designs the Hierarchical Flow Learn-

ing Mechanism (HFLM) to learn the access patterns among the

opcodes in these CDFs. Speci�cally, assume the set of opcode se-

quences extracted from the CDFs is Θ = {\1, \2, . . . , \<} where

\8 = {\81, \82, . . . , \8=} is the 8-th sequence.< and = represent the

number of CDFs and the length of the CDF, respectively. For each

opcode, DeepInfer �rst initializes it with the embedding matrix, i.e.,

48 9 =W\8 9 . Then, for each \8 , it uses the bi-directional LSTM [73]

to incorporate the contextual operations from two directions and

produce the hidden embedding vectors:

ℎ8 9 = [
→

!()" (48 9) |
←

!()" (48 9)] (1)

where ℎ8 9 is the hidden embedding vector of the 9-th opcode in \8
and [·|·] refers to the concatenate operation.

Local Encoder. After obtaining the vector of each opcode, DeepIn-

der next generates the embedding vector of a CDF. Since there

exist instructions that merely use the variable de�ned by previous

instructions as the target address and the type-related instructions

will occur after such instructions, simply summing or averaging

operation over the opcodes will introduce some irrelevant noise

information. To make the model pay more attention to type-related

operations, we employ the attention mechanism to calculate local

weights from these opcodes and aggregate them into the represen-

tation of the CDF:

48 =
∑

@

ℎ8 9 [4G?
(

5;
(

ℎ8 9
))

/
∑

@

4G?
(

5;
(

ℎ8 9
))

] (2)

where 48 is the embedding vector of 8-th CDF; 4G? () refers to the

exponential function; 5; represents the linear layer followed by the

ReLU activation function [20]. We call the above operations the

local encoder as shown in Fig. 2, because they focus on a single

CDF in a function.

Global Encoder. According to the above operations, we can obtain

the embedding vector for each CDF. Then, we introduce how to

generate the overall embedding vector at function level because our

aim is to recover the signatures for a function. There are multiple

CDFs can be extracted from a function and they are accessed in the

same order as the arguments that appear in the function declaration.

Thus, we treat the CDFs as a sequence and use their embedding

vectors (i.e., 48) as the model input. We also use the bi-directional

LSTM to update the embedding vectors of each CDF:

4̂8 = [
→

!()" (48) |
←

!()" (48)] (3)

where 4̂8 is the hidden embedding vector of 8-th CDF generated by

the model.

Similarly, not all CDFs play the same importance in recovering

the type of one parameter because the EVM will use one or more

di�erent instructions to access distinct types of parameters. Hence,

DeepInfer uses the attention mechanism to calculate global weights

from the embedding vectors of all the CDFs and incorporate them

into an overall representation, forcing the model to concentrate

on the parts of interested CDFs while recovering di�erent types of

parameters:

�3 =

∑

?

4̂8 [4G?
(

56 (4̂8)
)

/
∑

?

4G?
(

56 (4̂8)
)

] (4)

where �3 refers to the overall representation vectors of CDFs; 56
represents the linear layer followed by the ReLU activation function.

By using the above equations (1) - (4), DeepInfer can output the

overall CDF embedding vector for each function. Next, we will

introduce how to deal with constant values.

3.4.2 CV Embedding. As for constant values, since there is no

order relations between them, DeepInfer builds a lookup table,2

in which each constant is initialized randomly and updated during

the model training. Assume a set of constant values collected in the

IR of each function is Φ = {q1, q2, . . . , q: } in which : is the number

of unique constant values. DeepInfer embeds each constant into its

initial embedding vector by inquiring about the lookup table, i.e., 2:
=,2 q: . We will explain how these constant values are aggregated

750

DeepInfer : Deep Type Inference from Smart Contract Bytecode ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

into the CDF embedding vectors to enhance the model inference

ability when building the classi�cation model and the generative

model in the following.

3.4.3 ClassificationModel. Asmentioned above, we have restricted

all the types into a limited list. Thus, we can naturally regard the sig-

nature inference as a classical multi-classi�cation task. Speci�cally,

given the embedding vectors of CDFs �3 and CVs 21, 22, . . . , 2: , we

expect the model to learn not only the access operations from CDFs

but also the possible sizes from CVs. Thus, DeepInfer �rst uses a

linear function 52 to map each constant embedding 28 into the hid-

den vector 2̂8 and then employs the attention mechanism to learn

to pay more attention to the constant value that are relevant to a

speci�c type, i.e., constant attention:

�2 =

∑

:

[4G? (2̂8)/
∑

:

4G? (2̂8)]28 (5)

where �2 is the overall representation of the CVs in each function.

To learn the operation patterns and the constant information si-

multaneously, DeepInfer concatenates these two embedding vectors

to form the representation vector for each function:

�2;B = [�3 |�2] (6)

According to the representation �2;B , DeepInfer can infer the

most possible type for the arguments by selecting the one that has

the maximal prediction probability over the type list:

>DC?DC2;B = 0A6<0G (,1�2;B + 11) (7)

where >DC?DC2;B is the predicted type of a parameter;,1 and 11
represent the trainable weight matrix and bias, respectively.

Recall that we mark all the types of arrays as the general signal

Array. If DeepInfer predicts a parameter as the type Array, its actual

type still needs to be further determined. We will introduce the

details in the next subsection.

3.5 Function Signature Generation

Di�erent from enumerable types, types that are marked as Array

can include in�nite nested structure and arbitrary size, whichmakes

it impossible to maintain a limited type list holding all the possible

situations. To solve this problem, DeepInfer designs a sequence gen-

eration model to dynamically generate the possible array type by

learning the type-related information extracted from the IR. Specif-

ically, DeepInfer follows the architecture of sequence to sequence

learning which consists of an encoder and a decoder to achieve this

goal as shown in Fig. 2.

Encoder. Di�erent from the classical sequence learning encoder

that takes the tokenized sequence as inputs and makes each token

learn the contextual token information, DeepInfer directly treats the

embedding vector of CDFs (i.e., �3) and all the embedding vectors

of CVs (i.e., 2:) as the input, but doesn’t require them to recognize

the context because there is no order relationships between the

inputs. DeepInfer utilizes such an input form because we expect

it can not only predict the basic types of an array (e.g., uint, bool,

address, etc) according to implicit knowledge from CDFs but also

determine the dimensions according to the CVs. Thus, DeepInfer

adopts the input embedding vectors X = {20, 21, 22, . . . , 2: } (20 =

�3) to guide the type generation in the decoding procedure.

Decoder. DeepInfer uses vanilla Recurrent Neural Network (RNN)

as the basic architecture of the decoder which reads an input to-

ken and combines it with embedding vectors from the encoder to

generate the target token. Assume the vocabulary of basic types is

V = {E1, . . . , EA } where A represents the vocabulary length, Deep-

Infer can predict the basic type of an array from this vocabulary

according to the input information. However, the nested depth or

dimension size of an array cannot be foreseen because such values

need to be determined dynamically according to the inputs. That

is, it su�ers from the out-of-vocabulary (OOV) issue [22, 25]. To

deal with this situation, DeepInfer introduces the copy mechanism

[22, 51] that can dynamically copy or generate the most possible

token as the decoder output.

Given the encoder output {20, 21, 22, . . . , 2: } and the current (i.e.

step C) decoder input hidden status BC , DeepInfer employs the atten-

tion mechanism to calculate the current context vector:

�2CG =

:
∑

8=0

U828 (8)

U8 = BC,628/
∑

8

BC,628 (9)

where U8 is the weight score and,6 is the trainable weight matrix.

Then, DeepInfer predicts the probability of the output token at

current step by either selecting the most possible token from the

vocabularyV or copying the token from the input sequence X:

>DCC = ?664=4C + (1 − ?6)2>?~C (10)

where the >DCC is the �nal probability distribution at step C ; ?6 refers

to the probability a token needs to be generated; 64=4C and 2>?~C
means the probability distributions over the vocabularyV or the

input sequence X, respectively:

?6 = f
(

,2CG�2CG +,BBC +,?BC−1 + 16
)

(11)

64=4C = B> 5 C<0G (,+ [BC |�2CG] + 1+) (12)

2>?~C =
∑

8:G8=~

0CCC8 (13)

where f is an activation function;,2CG ,,B ,,? , 16 ,,+ , and 1+
are the trainable parameters; ~ is a token and G8 ∈ X; 0CC

C
8 refers to

the attentive probability distribution over X at step C .

The decoder starts with the token <SOS> and outputs all possible

tokens step by step until a special token <EOS> appeared following

the process in previous work [22, 51]. To make the model better

learn the correct output token sequence, DeepInfer introduces the

teacher forcing technique [69] during the model training. This

technique employs the scheduled sampling [8] that makes the input

distribution between training and generation as similar as possible

to force the output tokens being subject to truly array types.

3.6 Function Return Recovery

As described above, arguments access has explicit instruction op-

erations in the EVM bytecode whereas the returns of a function

is stored into the memory. Thus, the model needs to understand

the functionality for inferring function returns. CFG re�ects how

each statement is executed during the program running [44][71]

and we expect the model to understand return-related knowledge

from the CFG. Graph Neural Network (GNN), due to its powerful

751

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Kunsong Zhao, Zihao Li, Jianfeng Li, He Ye, Xiapu Luo, and Ting Chen

structural learning ability, has been widely used in many code com-

prehension related tasks [4][67]. Because of the graph structure

representation of the CFG, it is natural that using the GNN model

to learn its implicit information. In this work, DeepInfer adopts the

Graph Attention Network (GAT) to learn the knowledge from the

CFG, because not all the execution paths are associated with the

return values and GAT can automatically give more focus on the

execution paths related to the function returns.

Concretely, assume the node set of a CFG is Ω = {l1, l2, . . . , l` }

where ` represents the number of basic blocks. We extract the

instruction sequence from each basic block and use their opcodes

to train another CBOW model for producing a new embedding

matrixW′ similar to § 3.4.1. We don’t use the previous mapping

matrixW because our aim here is to make the embedding of each

opcode capture its contextual operations at basic block level rather

than the signature-related CDFs. For each basic block, DeepInfer

usesW′ to initialize the opcodes included in it and averages them

to produce the node embedding vectors.

Next, DeepInfer employs the GAT to update the embedding vec-

tors of each node by incorporating its neighborhood nodes with

di�erent weights:

ℎ∗` =

∑

a∈N`

i`,Aℎ
∗
a (14)

where ℎ∗` is the updated embedding vector of the `-th node andN`

means the neighborhood nodes of the `-th node.,A is trainable

parameters. i` is the weight score across N` :

i` =

exp
(

LeakyReLU
(

, ′A [ℎ
∗
` |ℎ
∗
a]
))

∑

a∈N`
exp

(

LeakyReLU
(

, ′A [ℎ
∗
` |ℎ
∗
a]
)) (15)

where LeakyReLU [37] is the activation function and, ′A is a train-

able parameter.

After the node embedding vectors are updated by multi-layer

GAT, DeepInfer aggregates all the node embedding vectors to pro-

duce the representation vectors �� for a CFG using the similar

operation as Eq. (2) and Eq. (4). Finally, DeepInfer uses a softmax

layer to output the probability distribution.

4 EVALUATION

4.1 Experimental Setup

4.1.1 Dataset. To evaluate the accuracy of DeepInfer, we follow

the previous work [10] to instrument an Ethereum node to ob-

tain the runtime bytecode from deployed smart contracts. As a

result, we collect 47,598,631 bytecode for Solidity smart contracts

and 75,627 bytecode for Vyper smart contracts. We merely keep

the open-source smart contracts because the ground-truth can be

obtained from their source code. We remove the duplicated smart

contracts and use the Etherscan API [6] to collect their ground-

truth. According to the statistic, 99.9% functions with equal or less

than nine arguments and returns. Following the processing prin-

ciple in previous work [15], we focus on the functions with no

more than nine arguments or returns. As a result, we obtain 292,064

unique functions for Solidity contracts and 5,003 unique functions

for Vyper contracts, respectively. For each language, we randomly

select 80% of the collected data as the training set and the remainder

is treated as the test set.

4.1.2 Implementation. We implement DeepInfer in about 2,100

lines of code using Python 3. The IR is parsed from the bytecode

using the Gigahorse tool [21]. We employ multiprocessing package

with 64 processes to parallelize the data processing pipeline. Since

there are multiple arguments or returns for each function, we �rst

train a model to predict the number of arguments or returns and

separately train the models for arguments or returns on each posi-

tion. We iteratively train the models to relieve the data de�ciency

issue and enhance the knowledge learned by the model [63–65, 72].

For the model construction, we adopt Pytorch framework [48] to

implement our HFLM component in which two bi-directional LSTM

layers are used. We embed each input token into a 100-dimensional

embedding vector and the size of hidden layer is set as 200. To opti-

mize the model parameters, we select the Adam algorithm [30] as

the optimizer to update the gradient. During the generation process,

we adopt beam search technique [55] with a beam width of 10 to

produce the output sequence. To understand the functionality from

the CFG, we use two layers of the GAT to learn and update node

embedding vectors.

Table 2: Evaluation Results of DeepInfer

Compiler Metric

Signature Return

Number Type Number Type

Solidity

Top-1 0.983 0.835 0.871 0.749

Top-3 0.995 0.944 0.971 0.889

Top-5 0.998 0.966 0.988 0.943

Vyper

Top-1 0.721 0.634 0.800 0.535

Top-3 0.958 0.840 0.990 0.782

Top-5 0.994 0.897 0.998 0.841

4.2 RQ1: How is the accuracy of DeepInfer?

4.2.1 Motivation. The aim of DeepInfer is to recover the function

signatures and returns by learning the access patterns or under-

standing the functionality from EVM bytecode, respectively. This

question is designed to explore to what extentDeepInfer can recover

the function signatures or returns.

4.2.2 Approach. To answer this question, we train di�erent models

to deal with distinct tasks. For function signature inference, Deep-

Infer trains a model to predict the number of arguments and then

other models are trained to determine the type at each position

over a limited type list (§ 3.4). For the types that are marked as

Array, since the in�nite nesting depth and arbitrary size of them,

DeepInfer trains generative models to recover the actual type (§ 3.5).

For function return inference, DeepInfer trains classi�cation mod-

els that can understand the functionality to predict the number

and types of returns (§ 3.6). We evaluate the accuracy of DeepInfer

with all the collected functions in open-source Solidity and Vyper

contracts, respectively. We report the average top-: accuracy of

DeepInfer, which is the ratio of correct inference occurred in the

most probable : (: ∈ {1, 3, 5}) candidates to the total number of

unique ground truths.

4.2.3 Results. Table 2 illustrates the accuracy of DeepInfer for re-

covering the number and types of signatures and returns, respec-

tively. When considering the top-1 suggestion, DeepInfer achieves

752

DeepInfer : Deep Type Inference from Smart Contract Bytecode ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

the accuracy of 0.983, 0.835, 0.871, and 0.749 for the number and

type inference of arguments and returns in Solidity, respectively. It

obtains the top-1 accuracy of 0.721, 0.634, 0.800, and 0.535 in Vyper

smart contracts, respectively. When taking the top-5 suggestion

into account, the accuracy goes up to 0.998, 0.966, 0.988 and 0.943 for

Solidity, and 0.994, 0.897, 0.998 and 0.841 for Vyper, respectively. It

shows the average accuracy improvements in recovering signatures

and returns by 13.3% and 38.6% in Solidity and Vyper, respectively.

We manually investigate the incorrect inference and summarize

the causes of failures as follows.

1 function register(bytes _domain , address _address) external {
2
3 addresses[_domain] = _address;
4 }

Listing 2: An inaccurate recovery in case 1

Case 1: DeepInfer will confuse the types bytes and string when

there is no operation on the parameter itself in smart contracts. As

shown in Listing 2, despite DeepInfer correctly predict the second

parameter as the type address but it inaccurately predicts the �rst

parameter as string instead of bytes. This is because both bytes and

string are loaded by the same instruction CALLDATACOPY . They di�er

only in that the former can be accessed by the BYTE instruction

but the latter cannot. However, in this case, the �rst parameter is

used as the index without any manipulation for itself, i.e., the BYTE

instruction is absent in the corresponding IR.

1 function getContractVersionCount(bytes32 _name) external ... {
2
3 return addressStorageHistory[_name]. length;
4 }

Listing 3: An inaccurate recovery in case 2

Case 2: DeepInfer will confuse the types bytes32 and uint256.

When loading the byte sequence, it will be masked by zeros on

the low-order side. Instead loading the unsigned integer will result

in the masking by zeros on the high-order side. However, when

loading the types bytes32 or uint256, they have already reached the

maximum length (i.e., 32 bytes) so no masking operation is needed,

i.e., they have the same loading instructions. The di�erences be-

tween them are that the former can be accessed by BYTE instruction,

whereas the latter can be used for arithmetic operations. As a result,

as shown in Listing 3, DeepInfer incorrectly predict the bytes32 as

the uint256, because there are no byte access or arithmetic opera-

tions and this parameter is only used as the index.

1 function verify(address [2] tokens , uint256 [8] args) external{
2 address depositToken = tokens [0];
3 address issueToken = tokens [1];
4 uint256 totalIssueAmount = args [0];
5 uint256 interestRate = args [1];
6 uint256 maturity = args [2];
7 uint256 issueFee = args [3];
8 uint256 minIssueRatio = args [4];
9
10 }

Listing 4: An inaccurate recovery in case 3

Case 3: There are some missing constant values due to the

compilation optimization of smart contracts, which misleads the

prediction of DeepInfer. As shown in Listing 4, the arguments of the

function are one-dimensional static array whose sizes needed to

be inferred by incorporating the information from constant values.

However, since the optimization operation is activated during the

compilation, the constant values related to the size are missing. As

a result, DeepInfer inaccurately infers the size of the array.

1 function getRiskAndValue(bytes32 _result) public returns (uint80
, uint128) {

2 bytes memory riskb = sliceFromBytes32(_result , 0, 16);
3 bytes memory valueb = sliceFromBytes32(_result , 16, 32);
4 return (uint80(toUint128(riskb)), toUint128(valueb));
5 }

Listing 5: An inaccurate recovery in case 4

Case 4: DeepInfer fails to infer some rare types. As shown in

Listing 5, very few functions adopt the type uint80 as the return

type. This causes the model can simply learn extremely limited

knowledge about this type during the model training process. As a

result, DeepInfer outputs an incorrect inference.

Answer to RQ1: The top-5 accuracy of DeepInfer is 0.974

for Solidity and 0.933 for Vyper.

4.3 RQ2: How does DeepInfer perform
compared with existing tools?

4.3.1 Motivation. Since there are some existing tools that decom-

pile bytecode into human-readable pseudocode or directly recover

function signatures from the bytecode, this question is designed

to explore whether DeepInfer performs better than existing tech-

niques.

4.3.2 Approach. We compared DeepInfer with three state-of-the-

art decompilers (including EBD [43], Eveem [17], and Gigahorse

[21]) and one symbolic execution-based static analysis technique

SigRec [9] in terms of signature recovery. All the four baseline

approaches support the bytecode of smart contracts as input. If one

method can correctly infer the types of signatures or returns at

a position, we treat this as a successful prediction. We report the

average accuracy of these baselines in Solidity and Vyper smart

contracts, respectively.

4.3.3 Results. Table 3 presents the average results for DeepInfer

and baseline methods. From this table, we can �nd that the average

top-1 accuracy of DeepInfer achieves average improvements by

85.9% and 148.3% compared with the baselines while recovering

function signatures in Solidity and Vyper, respectively. Despite

DeepInfer obtaining nearly the same top-1 accuracy as SigRec when

predicting the types of arguments in Solidity, it achieves an im-

provement by 8.4% when considering the top-5 suggested types.

Besides, the top-1 accuracy of DeepInfer achieves an improvement

by 13.8% compared with SigRec when dealing with Vyper Smart

contracts. This is because SigRec depends on the static heuristic

rules designed by human experts, which limits its ability to expand

to cover newly developed and compiled contracts involving new

access patterns. Instead, DeepInfer can automatically learn the ac-

cess patterns of arguments from the bytecode without any human

intervention. We can see from this table that none of the baselines

support recovering function returns. Instead, DeepInfer achieves

the top-5 accuracy of 0.968 and 0.924 while recovering function

returns in Solidity and Vyper, respectively.

753

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Kunsong Zhao, Zihao Li, Jianfeng Li, He Ye, Xiapu Luo, and Ting Chen

Table 3: Average Results for DeepInfer and Baselines

Compiler Approach EBD Eveem Gigahorse SigRec

DeepInfer

Top-1 Top-3 Top-5

Solidity
Signature 0.459 0.521 0.327 0.904 0.900 0.967 0.980

Return - - - - 0.818 0.936 0.968

Vyper
Signature 0.208 0.271 0.216 0.589 0.670 0.888 0.937

Return - - - - 0.674 0.891 0.924

Answer to RQ2: The top-1 accuracy of DeepInfer for recov-

ering function signatures achieves average improvements

by 85.9% and 148.3% across the baselines in Solidity and

Vyper, respectively. In addition, only DeepInfer can recover

function returns with the top-5 accuracy by 0.968 for Solid-

ity and 0.924 for Vyper.

4.4 RQ3: How e�cient is DeepInfer?

4.4.1 Motivation. As the static analysis techniques for function sig-

nature recovery (e.g., SigRec) are time-expensive due to the program

simulation execution and path exploration [7], DeepInfer depends

on well-trained deep learning models to directly predict function

signatures. This question is designed to evaluate how e�cient is

DeepInfer while recovering function signatures and returns.

4.4.2 Approach. To explore what is the performance overhead of

DeepInfer, we execute and compare it with other baselines. We

exclude the approach EBD because it depends on a limited FSD and

searches the function signatures from this database if exists, which

just consumes a negligible amount of time. For DeepInfer, since

the training process can be done o�ine, we compare its predictive

time cost. We report the average time consumption for recovering

signatures and returns of each function in seconds.

Table 4: Average Time Consumption

Approach DeepInfer(SigRec Gigahorse Eveem Speedup DeepInfer'

Time(s) 0.08 0.40 0.57 5.09 24.25x 0.003

DeepInfer(and DeepInfer' refer to the inference for signatures and returns, respectively.

4.4.3 Results. Table 4 elaborates the average time consumption of

DeepInfer and other three baselines for recovering function signa-

tures. DeepInfer only spends 0.08 seconds for recovering signatures

of each function, which is on average over 24 times faster than

other baselines. Besides, DeepInfer spends 0.003 seconds for recov-

ering function returns on average. This is because di�erent from

the static analysis-based techniques that run on central processing

units, DeepInfer adopts deep learning as the infrastructure which

naturally supports the operation acceleration of the graphics pro-

cessing units. In addition, DeepInfer can be fully trained o�ine and

then used to predict online.

Answer to RQ3: DeepInfer is over 24 times faster than the

baselines on average.

4.5 RQ4: How does the compiler version a�ect
DeepInfer?

4.5.1 Motivation. The compiler versions are frequently upgraded

which will introduce the new characteristics and operations to

avoid potential vulnerabilities [56]. This question is designed to

explore how the changes of compiler versions impact DeepInfer.

4.5.2 Approach. To evaluate the impact of various compiler ver-

sions on DeepInfer, we category all the open-source Solidity smart

contracts according to their main versions. We train the models

on the lower versions and test whether DeepInfer still works on

the high version that is not visible during the model training. For

example, we train the models on the smart contracts with the ver-

sions 0.4.x to 0.7.x and assess its accuracy on the high version 0.8.x.

We select the smart contracts whose version is large than 0.4.x be-

cause the counterpart is too little to support the model training (less

than 1%). We report the average accuracy of DeepInfer on di�erent

compiler versions.

Top-1 Top-3 Top-5
0.7

0.8

0.9

1.0

A
cc
ur
ac
y

v0.5.x v0.6.x v0.7.x v0.8.x

(a) Signature
Top-1 Top-3 Top-5

0.7

0.8

0.9

1.0

A
cc
ur
ac
y

v0.5.x v0.6.x v0.7.x v0.8.x

(b) Return

Figure 3: Evaluation results of DeepInfer under various com-

piler versions.

4.5.3 Results. Fig. 3 presents the average accuracy of DeepInfer un-

der di�erent compiler versions. We can �nd that DeepInfer achieves

nearly the same performance for recovering function signatures

and returns across various compiler versions, respectively. Despite

the state-of-the-art tool SigRec has the ability to recover the func-

tion signatures as shown in § 4.3, it will be completely disabled

when the compiler version is larger than 0.8.0. This is because the

design of SigRec relies on the access patterns of compiler versions.

Instead, DeepInfer is built upon the IR which strips the compiler-

related operations. Such design makes DeepInfer insensitive to the

changes of compiler versions. It also demonstrates that DeepInfer

actually learns the implicit knowledge that is relevant to function

signatures and returns.

Answer to RQ4: DeepInfer is immune to the changes in

compiler versions.

5 DISCUSSION

In this section, we will discuss the limitations of DeepInfer and

potential threats to validity encountered.

First, DeepInfer cannot recover the function signatures if the

IR is not correctly parsed during the phase of lifting. DeepInfer

adopts the state-of-the-art lifting tool Gigahorse [21] to convert

the bytecode into the register-based IR. If Gigahorse crashes, the IR

cannot be properly lifted, DeepInfer will not be able to extract the

valid access patterns, resulting in a failed recovery. Similar situation

will also occur while recovering returns. But we found that such

situation is rare (nearly 0.2%), which implies that DeepInfer will

hardly be a�ected. We will try to extend such tool to support valid

754

DeepInfer : Deep Type Inference from Smart Contract Bytecode ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

lifting operation, especially for the Vyper smart contracts in the

future.

Second, the accuracy of inferring some rare types is not as high

as that of inferring other types. This is because DeepInfer designs

a deep learning-based architecture which is inherently limited by

the training data itself due to the data-hungry characteristics of

deep learning techniques [31, 60]. One solution is to employ some

data-enhancement techniques that preserve the semantics of the

bytecode and we leave this as the immediate future work.

On the other hand, there are some possible threats to validity

during our experiments. The threats to internal validity lie in the

tuning of hyper-parameters in the models. To relieve this validity,

we �ne-tune the batch size from 16 to 128 and the learning rate

from 1e-5 to 1e-3 to make the model be fully trained. In addition,

we set the hidden size as 200 dimensions and adopt some default

settings (i.e., stacking two LSTM or GAT layers) for experiments.

Other parameter combinations may also improve the accuracy of

DeepInfer and we leave this exploration as the future work.

6 RELATED WORK

6.1 Signature Inference in Smart Contracts

Abi-guesser [50] was developed to infer the types of ABI-encoded

data. Chen et al. [9] was the �rst to develop a static analysis-based

tool called SigRec to recover function signatures in smart con-

tracts. Speci�cally, SigRec �rst disassembled the bytecode and then

proposed type-aware symbolic execution that explored how a pa-

rameter was manipulated in EVM instructions. It designed di�erent

patterns for di�erent types according to the speci�c type-related

operations in EVM and symbolically executed EVM instructions to

recover parameter types.

However, abi-guesser can only deal with very simple data for-

mats, which limits the ability in real-world smart contracts. In

addition, since the accessing rules used by SigRec heavily rely on

the expert knowledge, it is hard to be extended. Thus, we propose

the �rst deep learning based method that can automatically learn

the accessing rules or understand functionalities to recover func-

tion signatures and returns from the bytecode of smart contracts

without any manual e�orts.

6.2 Deep Learning for Signature Inference

Although very little work focused on function signature inference

in smart contract, this topic been explored much more in other

scenarios with the help of deep learning techniques. Chua et al.

[15] was the �rst to introduce deep learning into function type

recovery from C/C++ binaries. They regarded instructions as a

sequence and employed the RNN model to learn the semantics

to recover types. However, some important information related

to function signatures was stripped o� during the compilation

process. To deal with this limitation, Lin et al. [35] proposed ReSIL

that injected compiler-optimization-related domain information

into the instructions to assist the inference of function signatures.

Pei et al. [46] pretrained a model to learn the operational semantics

from asssembly instructions with generative state modeling and

then used the model to infer the types for C/C++ binaries. Lehmann

et al. [32] tried to recover types from WebAssembly binaries. They

de�ned grammars of high-level type languages and employed the

neural machine translation architecture to recover these high-level

types based on the DWARF debugging information.

In addition to the above studies recovering signatures from bi-

naries, there also exist work focused on signature recovery from

source code. Malik et al. [38] developed a LSTM-based model called

NL2Type that utilized the code comments, function names and pa-

rameter names from the source code to predict the function types

in JavaScript. Allamanis et al. [3] developed a graph neural network

based method equipped with a novel triplet loss function which can

learn the syntactic and semantic from source code to predict types

in Python functions. Mir et al. [41] �rst parsed Python source code

into ASTs and then extracted identifers, contextual information and

visible type hints. They incorporated code semantics learnt by using

a RNN model from code contexts with type hints and employed

kNN algorithm to infer types. Peng et al. [47] proposed HiTyper

that combined deep learning with static analysis for type prediction

in Python. They �rst constructed a type dependency graph (TDG)

from source code and then conducted forward static type inference

along the TDG according to type dependencies. For some variables

that would impact the types of many others, HiTyper trained a

similarity-based deep learning model to recommend possible types.

Di�erent from the above studies, we focus on recovering function

signatures and returns from the bytecode of smart contracts without

any human intervention. Since the smart contracts are designed

to perform especial actions on the blockchain (e.g., transactions),

the above-mentioned tools cannot capture some domain-speci�c

operations, such as CALLDATALOAD and CALLDATACOPY. Thus, it is

necessary to develop a new tool for the bytecode of smart contracts.

To the best of our knowledge, we are the �rst to design such an

automatic deep learning model for this purpose.

7 CONCLUSION

We present DeepInfer, a novel deep learning-based framework to

automatically recover function signatures and returns from the

bytecode of Solidity and Vyper smart contracts without any human

intervention. The experimental results demonstrate that DeepInfer

is more accurate and e�cient than existing tools under di�erent

languages and distinct compiler versions. In the future, we plan

to conduct a deep analysis on each component of the DeepInfer

framework, and explore other alternative model components (such

as Transformers) and parameter combinations to improve themodel

performance. In addition, we will extend our tool to support smart

contracts running on other blockchains.

8 DATA AVAILABILITY

Our experimental materials are available at [57] or https://github.

com/sepine/DeepInfer.

ACKNOWLEDGMENTS

We sincerely thank the anonymous reviewers for their construc-

tive comments. This work is partly supported by Hong Kong RGC

Projects (No. PolyU15219319, PolyU15222320, PolyU15224121) and

National Natural Science Foundation (No. 62202405).

755

https://github.com/sepine/DeepInfer
https://github.com/sepine/DeepInfer

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Kunsong Zhao, Zihao Li, Jianfeng Li, He Ye, Xiapu Luo, and Ting Chen

REFERENCES
[1] Elvira Albert, Jesús Correas, Pablo Gordillo, Guillermo Román-Díez, and Albert

Rubio. 2019. SAFEVM: a safety veri�er for Ethereum smart contracts. In Proceed-
ings of the 28th ACM SIGSOFT International Symposium on Software Testing and
Analysis (ISSTA). 386–389. https://doi.org/10.1145/3293882.3338999

[2] Maher Alharby and Aad Van Moorsel. 2017. Blockchain-based smart contracts:
A systematic mapping study. arXiv preprint arXiv:1710.06372 (2017).

[3] Miltiadis Allamanis, Earl T Barr, Soline Ducousso, and Zheng Gao. 2020. Typ-
ilus: Neural type hints. In Proceedings of the 41st Acm SIGPLAN Conference
on Programming Language Design and Implementation (PLDI). 91–105. https:
//doi.org/10.1145/3385412.3385997

[4] Uri Alon, Shaked Brody, Omer Levy, and Eran Yahav. 2018. code2seq: Gen-
erating sequences from structured representations of code. arXiv preprint
arXiv:1808.01400 (2018).

[5] Monika di Angelo and Gernot Salzer. 2020. Characterizing types of smart con-
tracts in the ethereum landscape. In International Conference on Financial Cryp-
tography and Data Security. 389–404.

[6] Etherscan API. 2019. Etherscan documentation. https://docs.etherscan.io/.
[7] Roberto Baldoni, Emilio Coppa, Daniele Cono D’elia, Camil Demetrescu, and

Irene Finocchi. 2018. A survey of symbolic execution techniques. ACMComputing
Surveys (CSUR) 51, 3 (2018), 1–39. https://doi.org/10.1145/3182657

[8] Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer. 2015. Scheduled
sampling for sequence prediction with recurrent neural networks. Advances in
Neural Information Processing Systems (NeurIPS) 28 (2015).

[9] Ting Chen, Zihao Li, Xiapu Luo, Xiaofeng Wang, Ting Wang, Zheyuan He,
Kezhao Fang, Yufei Zhang, Hang Zhu, Hongwei Li, et al. 2021. Sigrec: Automatic
recovery of function signatures in smart contracts. IEEE Transactions on Software
Engineering (TSE) 48, 8 (2021), 3066–3086. https://doi.org/10.1109/TSE.2021.
3078342

[10] Ting Chen, Zihao Li, Yufei Zhang, Xiapu Luo, Ang Chen, Kun Yang, Bin Hu, Tong
Zhu, Shifang Deng, Teng Hu, et al. 2019. Dataether: Data exploration framework
for ethereum. In 2019 IEEE 39th International Conference on Distributed Computing
Systems (ICDCS). 1369–1380. https://doi.org/10.1109/ICDCS.2019.00137

[11] Ting Chen, Zihao Li, Yufei Zhang, Xiapu Luo, Ting Wang, Teng Hu, Xiuzhuo
Xiao, Dong Wang, Jin Huang, and Xiaosong Zhang. 2019. A large-scale empirical
study on control �ow identi�cation of smart contracts. In Proceedings of the
2019 ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement (ESEM). 1–11. https://doi.org/10.1109/ESEM.2019.8870156

[12] Ting Chen, Zihao Li, Yuxiao Zhu, Jiachi Chen, Xiapu Luo, John Chi-Shing Lui,
Xiaodong Lin, and Xiaosong Zhang. 2020. Understanding ethereum via graph
analysis. ACM Transactions on Internet Technology (TOIT) 20, 2 (2020), 1–32.
https://doi.org/10.1109/INFOCOM.2018.8486401

[13] Ting Chen, Yufei Zhang, Zihao Li, Xiapu Luo, Ting Wang, Rong Cao, Xiuzhuo
Xiao, and Xiaosong Zhang. 2019. Tokenscope: Automatically detecting incon-
sistent behaviors of cryptocurrency tokens in ethereum. In Proceedings of the
2019 ACM SIGSAC Conference on Computer and Communications Security (CCS).
1503–1520. https://doi.org/10.1145/3319535.3345664

[14] Weimin Chen, Xinran Li, Yuting Sui, Ningyu He, Haoyu Wang, Lei Wu, and
Xiapu Luo. 2021. Sadponzi: Detecting and characterizing ponzi schemes in
ethereum smart contracts. Proceedings of the ACM on Measurement and Analysis
of Computing Systems 5, 2 (2021), 1–30. https://doi.org/10.1145/3460093

[15] Zheng Leong Chua, Shiqi Shen, Prateek Saxena, and Zhenkai Liang. 2017. Neural
nets can learn function type signatures from binaries. In 26th USENIX Security
Symposium (USENIX Security). 99–116.

[16] Monika Di Angelo and Gernot Slazer. 2020. Wallet contracts on Ethereum. In
2020 IEEE International Conference on Blockchain and Cryptocurrency (ICBC). 1–2.
https://doi.org/10.1109/ICBC48266.2020.9169467

[17] Eveem. 2019. Eveem. https://eveem.org.
[18] Michael Fröwis and Rainer Böhme. 2017. In code we trust? In Data Privacy

Management, Cryptocurrencies and Blockchain Technology. 357–372.
[19] Michael Fröwis, Andreas Fuchs, and Rainer Böhme. 2019. Detecting token systems

on ethereum. In International Conference on Financial Cryptography and Data
Security. 93–112.

[20] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. 2011. Deep sparse recti�er
neural networks. In Proceedings of the 14th International Conference on Arti�cial
Intelligence and Statistics. 315–323.

[21] Neville Grech, Lexi Brent, Bernhard Scholz, and Yannis Smaragdakis. 2019.
Gigahorse: thorough, declarative decompilation of smart contracts. In 2019
IEEE/ACM 41st International Conference on Software Engineering (ICSE). 1176–
1186. https://doi.org/10.1109/ICSE.2019.00120

[22] Jiatao Gu, Zhengdong Lu, Hang Li, and Victor OK Li. 2016. Incorporating copying
mechanism in sequence-to-sequence learning. arXiv preprint arXiv:1603.06393
(2016).

[23] Jingxuan He, Mislav Balunović, Nodar Ambroladze, Petar Tsankov, and Martin
Vechev. 2019. Learning to fuzz from symbolic execution with application to
smart contracts. In Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security (CCS). 531–548. https://doi.org/10.1145/3319535.

3363230
[24] Zheyuan He, Shuwei Song, Yang Bai, Xiapu Luo, Ting Chen, Wensheng Zhang,

Peng He, Hongwei Li, Xiaodong Lin, and Xiaosong Zhang. 2022. TokenAware:
Accurate and E�cient Bookkeeping Recognition for Token Smart Contracts.
ACM Transactions on Software Engineering and Methodology (TOSEM) (2022).
https://doi.org/10.1145/3560263

[25] Ziniu Hu, Ting Chen, Kai-Wei Chang, and Yizhou Sun. 2019. Few-Shot Rep-
resentation Learning for Out-Of-Vocabulary Words. In Proceedings of the 57th
Annual Meeting of the Association for Computational Linguistics (ACL). http:
//dx.doi.org/10.18653/v1/P19-1402

[26] Jianjun Huang, Songming Han,Wei You,Wenchang Shi, Bin Liang, JingzhengWu,
and Yanjun Wu. 2021. Hunting vulnerable smart contracts via graph embedding
based bytecode matching. IEEE Transactions on Information Forensics and Security
(TIFS) 16 (2021), 2144–2156. https://doi.org/10.1109/TIFS.2021.3050051

[27] Bo Jiang, Ye Liu, and Wing Kwong Chan. 2018. Contractfuzzer: Fuzzing
smart contracts for vulnerability detection. In 2018 33rd IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE). 259–269. https:
//doi.org/10.1145/3238147.3238177

[28] Jiao Jiao, Shuanglong Kan, Shang-Wei Lin, David Sanan, Yang Liu, and Jun
Sun. 2020. Semantic understanding of smart contracts: Executable operational
semantics of solidity. In 2020 IEEE Symposium on Security and Privacy (S&P).
1695–1712. https://doi.org/10.1109/SP40000.2020.00066

[29] Jerome Kehrli. 2016. Blockchain 2.0-from bitcoin transactions to smart con-
tract applications. Niceideas, November. Available at: https://www. niceideas.
ch/roller2/badtrash/entry/blockchain-2-0-frombitcoin (2016).

[30] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[31] Alina Kuznetsova, Hassan Rom, Neil Alldrin, Jasper Uijlings, Ivan Krasin, Jordi
Pont-Tuset, Shahab Kamali, Stefan Popov, Matteo Malloci, Alexander Kolesnikov,
et al. 2020. The open images dataset v4. International Journal of Computer Vision
128, 7 (2020), 1956–1981.

[32] Daniel Lehmann and Michael Pradel. 2022. Finding the dwarf: recovering precise
types from WebAssembly binaries. In Proceedings of the 43rd ACM SIGPLAN
International Conference on Programming Language Design and Implementation
(PLDI). 410–425. https://doi.org/10.1145/3519939.3523449

[33] Shipeng Li, Jingwei Li, Yuxing Tang, Xiapu Luo, Zheyuan He, Zihao Li, Xi Cheng,
Yang Bai, Ting Chen, Yuzhe Tang, et al. 2023. BlockExplorer: Exploring Blockchain
Big Data via Parallel Processing. IEEE Trans. Comput. (2023). https://doi.org/10.
1109/TC.2023.3248280

[34] Zihao Li, Jianfeng Li, Zheyuan He, Xiapu Luo, Ting Wang, Xiaoze Ni, Wenwu
Yang, Chen Xi, and Ting Chen. 2023. Demystifying DeFi MEV Activities in
Flashbots Bundle. In Proceedings of the 2023 ACM SIGSAC Conference on Computer
and Communications Security (CCS).

[35] Yan Lin, Debin Gao, and David Lo. 2022. ReSIL: Revivifying Function Signature
Inference using Deep Learning with Domain-Speci�c Knowledge. In Proceedings
of the 12th ACM Conference on Data and Application Security and Privacy. 107–118.
https://doi.org/10.1145/3508398.3511502

[36] Lu Liu, Lili Wei, Wuqi Zhang, Ming Wen, Yepang Liu, and Shing-Chi Cheung.
2021. Characterizing Transaction-Reverting Statements in Ethereum Smart
Contracts. In 2021 36th IEEE/ACM International Conference on Automated Software
Engineering (ASE). 630–641. https://doi.org/10.1109/ASE51524.2021.9678597

[37] Andrew L Maas, Awni Y Hannun, Andrew Y Ng, et al. 2013. Recti�er non-
linearities improve neural network acoustic models. In Proceedings of the 30th
International Conference on Machine Learning (ICML), Vol. 30. 3.

[38] Rabee Sohail Malik, Jibesh Patra, and Michael Pradel. 2019. NL2Type: inferring
JavaScript function types from natural language information. In 2019 IEEE/ACM
41st International Conference on Software Engineering (ICSE). 304–315. https:
//doi.org/10.1109/ICSE.2019.00045

[39] Jan Midtgaard and Thomas P Jensen. 2012. Control-�ow analysis of function
calls and returns by abstract interpretation. Information and Computation 211
(2012), 49–76.

[40] Tomas Mikolov, Kai Chen, Greg Corrado, and Je�rey Dean. 2013. E�cient
estimation of word representations in vector space. arXiv preprint arXiv:1301.3781
(2013).

[41] Amir M Mir, Evaldas Latoškinas, Sebastian Proksch, and Georgios Gousios. 2022.
Type4Py: practical deep similarity learning-based type inference for python. In
Proceedings of the 44th International Conference on Software Engineering (ICSE).
2241–2252. https://doi.org/10.1145/3510003.3510124

[42] Benoît Montagu and Thomas Jensen. 2021. Trace-based control-�ow analysis. In
Proceedings of the 42nd ACM SIGPLAN International Conference on Programming
Language Design and Implementation (PLDI). 482–496. https://doi.org/10.1145/
3453483.3454057

[43] MrLuit. 2019. EVM bytecode decompiler. https://github.com/MrLuit/evm.
[44] Animesh Nandi, Atri Mandal, Shubham Atreja, Gargi B Dasgupta, and Subhra-

jit Bhattacharya. 2016. Anomaly detection using program control �ow graph
mining from execution logs. In Proceedings of the 22nd ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining. 215–224. https:
//doi.org/10.1145/2939672.2939712

756

https://doi.org/10.1145/3293882.3338999
https://doi.org/10.1145/3385412.3385997
https://doi.org/10.1145/3385412.3385997
https://docs.etherscan.io/
https://doi.org/10.1145/3182657
https://doi.org/10.1109/TSE.2021.3078342
https://doi.org/10.1109/TSE.2021.3078342
https://doi.org/10.1109/ICDCS.2019.00137
https://doi.org/10.1109/ESEM.2019.8870156
https://doi.org/10.1109/INFOCOM.2018.8486401
https://doi.org/10.1145/3319535.3345664
https://doi.org/10.1145/3460093
https://doi.org/10.1109/ICBC48266.2020.9169467
https://eveem.org
https://doi.org/10.1109/ICSE.2019.00120
https://doi.org/10.1145/3319535.3363230
https://doi.org/10.1145/3319535.3363230
https://doi.org/10.1145/3560263
http://dx.doi.org/10.18653/v1/P19-1402
http://dx.doi.org/10.18653/v1/P19-1402
https://doi.org/10.1109/TIFS.2021.3050051
https://doi.org/10.1145/3238147.3238177
https://doi.org/10.1145/3238147.3238177
https://doi.org/10.1109/SP40000.2020.00066
https://doi.org/10.1145/3519939.3523449
https://doi.org/10.1109/TC.2023.3248280
https://doi.org/10.1109/TC.2023.3248280
https://doi.org/10.1145/3508398.3511502
https://doi.org/10.1109/ASE51524.2021.9678597
https://doi.org/10.1109/ICSE.2019.00045
https://doi.org/10.1109/ICSE.2019.00045
https://doi.org/10.1145/3510003.3510124
https://doi.org/10.1145/3453483.3454057
https://doi.org/10.1145/3453483.3454057
https://github.com/MrLuit/evm
https://doi.org/10.1145/2939672.2939712
https://doi.org/10.1145/2939672.2939712

DeepInfer : Deep Type Inference from Smart Contract Bytecode ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

[45] Ethereum Yellow Paper. 2022. Ethereum: A Secure Decentralised Generalised
Transaction Ledger. https://ethereum.github.io/yellowpaper/paper.pdf.

[46] Kexin Pei, Jonas Guan, Matthew Broughton, Zhongtian Chen, Songchen Yao,
David Williams-King, Vikas Ummadisetty, Junfeng Yang, Baishakhi Ray, and
Suman Jana. 2021. StateFormer: �ne-grained type recovery from binaries using
generative state modeling. In Proceedings of the 29th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations
of Software Engineering (ESEC/FSE). 690–702. https://doi.org/10.1145/3468264.
3468607

[47] Yun Peng, Cuiyun Gao, Zongjie Li, Bowei Gao, David Lo, Qirun Zhang, and
Michael Lyu. 2022. Static inference meets deep learning: a hybrid type infer-
ence approach for python. In Proceedings of the 44th International Conference on
Software Engineering (ICSE). 2019–2030. https://doi.org/10.1145/3510003.3510038

[48] PyTorch. 2022. PyTorch Documentation. https://pytorch.org/docs/stable/index.
html.

[49] Baptiste Roziere, Marie-Anne Lachaux, Lowik Chanussot, and Guillaume Lample.
2020. Unsupervised translation of programming languages. Advances in Neural
Information Processing Systems (NeurIPS) 33 (2020), 20601–20611.

[50] Samczsun. 2022. Abi-guesser. https://github.com/samczsun/abi-guesser.
[51] Abigail See, Peter J Liu, and Christopher D Manning. 2017. Get to the point:

Summarization with pointer-generator networks. arXiv preprint arXiv:1704.04368
(2017).

[52] Solidity. 2022. Solidity Documentation v0.8.17. https://docs.soliditylang.org/en/
v0.8.17.

[53] Contract ABI Speci�cation. 2022. Solidity Documentation v0.8.17. https://docs.
soliditylang.org/en/v0.8.17/abi-spec.html.

[54] SWC-104. 2020. Unchecked call return value. https://swcregistry.io/docs/SWC-
104.

[55] Transformers. 2022. Hugging Face Transformers. https://github.com/
huggingface/transformers.

[56] Solidity v0.8.0. 2020. Solidity v0.8.0 Breaking Changes. https://docs.soliditylang.
org/en/v0.8.17/080-breaking-changes.html.

[57] Paper Artifact V1.0. 2023. Paper Artifact. https://doi.org/10.6084/m9.�gshare.
23993463.v1.

[58] Vyper. 2022. Vyper Documentation. https://vyper.readthedocs.io/en/stable/.
[59] Zhiyuan Wan, Xin Xia, David Lo, Jiachi Chen, Xiapu Luo, and Xiaohu Yang.

2021. Smart contract security: A practitioners’ perspective. In 2021 IEEE/ACM
43rd International Conference on Software Engineering (ICSE). 1410–1422. https:
//doi.org/10.1109/ICSE-Companion52605.2021.00104

[60] Xiaozhi Wang, Ziqi Wang, Xu Han, Wangyi Jiang, Rong Han, Zhiyuan Liu, Juanzi
Li, Peng Li, Yankai Lin, and Jie Zhou. 2020. MAVEN: A massive general domain
event detection dataset. arXiv preprint arXiv:2004.13590 (2020).

[61] Huihui Wei and Ming Li. 2017. Supervised Deep Features for Software Functional
Clone Detection by Exploiting Lexical and Syntactical Information in Source
Code.. In Proceedings of the International Joint Conference on Arti�cial Intelligence
(IJCAI). 3034–3040.

[62] Pengcheng Xia, Haoyu Wang, Bingyu Gao, Weihang Su, Zhou Yu, Xiapu Luo,
Chao Zhang, Xusheng Xiao, and Guoai Xu. 2021. Trade or trick? detecting and

characterizing scam tokens on uniswap decentralized exchange. Proceedings of
the ACM on Measurement and Analysis of Computing Systems (SIGMETRICS) 5, 3
(2021), 1–26. https://doi.org/10.1145/3491051

[63] Zhiwen Xie, Runjie Zhu, Kunsong Zhao, Jin Liu, Guangyou Zhou, and Jimmy Xi-
angji Huang. 2021. Dual gated graph attention networks with dynamic iterative
training for cross-lingual entity alignment. ACM Transactions on Information
Systems (TOIS) 40, 3 (2021), 1–30. https://doi.org/10.1145/3471165

[64] Zhiwen Xie, Runjie Zhu, Kunsong Zhao, Jin Liu, Guangyou Zhou, and Xiangji
Huang. 2020. A contextual alignment enhanced cross graph attention network for
cross-lingual entity alignment. In Proceedings of the 28th International Conference
on Computational Linguistics (COLING). 5918–5928. http://dx.doi.org/10.18653/
v1/2020.coling-main.520

[65] Kun Xu, Linfeng Song, Yansong Feng, Yan Song, and Dong Yu. 2020. Coordinated
reasoning for cross-lingual knowledge graph alignment. In Proceedings of the
AAAI conference on Arti�cial Intelligence (AAAI), Vol. 34. 9354–9361.

[66] Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alex Smola, and Eduard
Hovy. 2016. Hierarchical attention networks for document classi�cation. In
Proceedings of the 2016 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies (ACL-HLT). 1480–
1489. http://dx.doi.org/10.18653/v1/N16-1174

[67] Zeping Yu, Wenxin Zheng, Jiaqi Wang, Qiyi Tang, Sen Nie, and Shi Wu. 2020.
Codecmr: Cross-modal retrieval for function-level binary source code matching.
Advances in Neural Information Processing Systems (NeurIPS) 33 (2020), 3872–3883.

[68] Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, and Xudong Liu. 2020.
Retrieval-based neural source code summarization. In 2020 IEEE/ACM 42nd
International Conference on Software Engineering (ICSE). 1385–1397. https:
//doi.org/10.1145/3377811.3380383

[69] Wen Zhang, Yang Feng, Fandong Meng, Di You, and Qun Liu. 2019. Bridging
the gap between training and inference for neural machine translation. arXiv
preprint arXiv:1906.02448 (2019).

[70] Peilin Zheng, Zibin Zheng, and Xiapu Luo. 2022. Park: accelerating smart contract
vulnerability detection via parallel-fork symbolic execution. In Proceedings of
the 31st ACM SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA). 740–751. https://doi.org/10.1145/3533767.3534395

[71] Yaqin Zhou, Shangqing Liu, Jingkai Siow, Xiaoning Du, and Yang Liu. 2019.
Devign: E�ective vulnerability identi�cation by learning comprehensive program
semantics via graph neural networks. Advances in Neural Information Processing
Systems (NeurIPS) 32 (2019).

[72] Hao Zhu, Ruobing Xie, Zhiyuan Liu, and Maosong Sun. 2017. Iterative entity
alignment via knowledge embeddings. In Proceedings of the International Joint
Conference on Arti�cial Intelligence (IJCAI).

[73] Xiaodan Zhu, Parinaz Sobihani, and Hongyu Guo. 2015. Long short-termmemory
over recursive structures. In International Conference on Machine Learning (ICML).
1604–1612.

Received 2023-02-02; accepted 2023-07-27

757

https://ethereum.github.io/yellowpaper/paper.pdf
https://doi.org/10.1145/3468264.3468607
https://doi.org/10.1145/3468264.3468607
https://doi.org/10.1145/3510003.3510038
https://pytorch.org/docs/stable/index.html
https://pytorch.org/docs/stable/index.html
https://github.com/samczsun/abi-guesser
https://docs.soliditylang.org/en/v0.8.17
https://docs.soliditylang.org/en/v0.8.17
https://docs.soliditylang.org/en/v0.8.17/abi-spec.html
https://docs.soliditylang.org/en/v0.8.17/abi-spec.html
https://swcregistry.io/docs/SWC-104
https://swcregistry.io/docs/SWC-104
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://docs.soliditylang.org/en/v0.8.17/080-breaking-changes.html
https://docs.soliditylang.org/en/v0.8.17/080-breaking-changes.html
https://doi.org/10.6084/m9.figshare.23993463.v1
https://doi.org/10.6084/m9.figshare.23993463.v1
https://vyper.readthedocs.io/en/stable/
https://doi.org/10.1109/ICSE-Companion52605.2021.00104
https://doi.org/10.1109/ICSE-Companion52605.2021.00104
https://doi.org/10.1145/3491051
https://doi.org/10.1145/3471165
http://dx.doi.org/10.18653/v1/2020.coling-main.520
http://dx.doi.org/10.18653/v1/2020.coling-main.520
http://dx.doi.org/10.18653/v1/N16-1174
https://doi.org/10.1145/3377811.3380383
https://doi.org/10.1145/3377811.3380383
https://doi.org/10.1145/3533767.3534395

	Abstract
	1 Introduction
	2 Background
	2.1 Ethereum & Smart Contracts
	2.2 Function Invocation in EVM
	2.3 Motivating Example

	3 Framework
	3.1 Overview
	3.2 Lifting & Function Recognition
	3.3 Feature Extraction
	3.4 Function Signature Inference
	3.5 Function Signature Generation
	3.6 Function Return Recovery

	4 Evaluation
	4.1 Experimental Setup
	4.2 RQ1: How is the accuracy of DeepInfer?
	4.3 RQ2: How does DeepInfer perform compared with existing tools?
	4.4 RQ3: How efficient is DeepInfer?
	4.5 RQ4: How does the compiler version affect DeepInfer?

	5 Discussion
	6 Related Work
	6.1 Signature Inference in Smart Contracts
	6.2 Deep Learning for Signature Inference

	7 Conclusion
	8 Data Availability
	References

